MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biadan2OLD Structured version   Visualization version   GIF version

Theorem biadan2OLD 814
Description: Obsolete proof of biadanii 813 as of 4-Mar-2023. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
biadani.1 (𝜑𝜓)
biadanii.2 (𝜓 → (𝜑𝜒))
Assertion
Ref Expression
biadan2OLD (𝜑 ↔ (𝜓𝜒))

Proof of Theorem biadan2OLD
StepHypRef Expression
1 biadani.1 . . 3 (𝜑𝜓)
21pm4.71ri 556 . 2 (𝜑 ↔ (𝜓𝜑))
3 biadanii.2 . . 3 (𝜓 → (𝜑𝜒))
43pm5.32i 570 . 2 ((𝜓𝜑) ↔ (𝜓𝜒))
52, 4bitri 267 1 (𝜑 ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator