Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-abbi Structured version   Visualization version   GIF version

Theorem bj-abbi 33108
Description: Remove dependency on ax-13 2422 from abbi 2932. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-abbi (∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})

Proof of Theorem bj-abbi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2811 . 2 ({𝑥𝜑} = {𝑥𝜓} ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓}))
2 bj-nfsab1 33105 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
3 bj-nfsab1 33105 . . . 4 𝑥 𝑦 ∈ {𝑥𝜓}
42, 3nfbi 1995 . . 3 𝑥(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓})
5 nfv 2005 . . 3 𝑦(𝜑𝜓)
6 df-clab 2804 . . . . 5 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
7 sbequ12r 2281 . . . . 5 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑𝜑))
86, 7syl5bb 274 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝜑))
9 df-clab 2804 . . . . 5 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
10 sbequ12r 2281 . . . . 5 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜓𝜓))
119, 10syl5bb 274 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜓} ↔ 𝜓))
128, 11bibi12d 336 . . 3 (𝑦 = 𝑥 → ((𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓}) ↔ (𝜑𝜓)))
134, 5, 12cbvalv1 2350 . 2 (∀𝑦(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓}) ↔ ∀𝑥(𝜑𝜓))
141, 13bitr2i 267 1 (∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})
Colors of variables: wff setvar class
Syntax hints:  wb 197  wal 1635   = wceq 1637  [wsb 2061  wcel 2157  {cab 2803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-ext 2795
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-clab 2804  df-cleq 2810
This theorem is referenced by:  bj-abbii  33110  bj-abbid  33111
  Copyright terms: Public domain W3C validator