![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-abbi2i | Structured version Visualization version GIF version |
Description: Remove dependency on ax-13 2342 from abbi2i 2920. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-abbi2i.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Ref | Expression |
---|---|
bj-abbi2i | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-abeq2 33634 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) | |
2 | bj-abbi2i.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | |
3 | 1, 2 | mpgbir 1779 | 1 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 = wceq 1520 ∈ wcel 2079 {cab 2773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-ext 2767 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-clab 2774 df-cleq 2786 df-clel 2861 |
This theorem is referenced by: bj-abid2 33642 bj-termab 33702 bj-df-nul 33892 |
Copyright terms: Public domain | W3C validator |