Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-abid2 Structured version   Visualization version   GIF version

Theorem bj-abid2 33278
Description: Remove dependency on ax-13 2377 from abid2 2922. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-abid2 {𝑥𝑥𝐴} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-abid2
StepHypRef Expression
1 biid 253 . . 3 (𝑥𝐴𝑥𝐴)
21bj-abbi2i 33272 . 2 𝐴 = {𝑥𝑥𝐴}
32eqcomi 2808 1 {𝑥𝑥𝐴} = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1653  wcel 2157  {cab 2785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-ext 2777
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator