Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axext3 Structured version   Visualization version   GIF version

Theorem bj-axext3 33346
Description: Remove dependency on ax-13 2333 from axext3 2755. (Contributed by BJ, 12-Jul-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axext3 (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem bj-axext3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elequ2 2120 . . . . 5 (𝑤 = 𝑥 → (𝑧𝑤𝑧𝑥))
21bibi1d 335 . . . 4 (𝑤 = 𝑥 → ((𝑧𝑤𝑧𝑦) ↔ (𝑧𝑥𝑧𝑦)))
32albidv 1963 . . 3 (𝑤 = 𝑥 → (∀𝑧(𝑧𝑤𝑧𝑦) ↔ ∀𝑧(𝑧𝑥𝑧𝑦)))
4 equequ1 2071 . . 3 (𝑤 = 𝑥 → (𝑤 = 𝑦𝑥 = 𝑦))
53, 4imbi12d 336 . 2 (𝑤 = 𝑥 → ((∀𝑧(𝑧𝑤𝑧𝑦) → 𝑤 = 𝑦) ↔ (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)))
6 ax-ext 2753 . 2 (∀𝑧(𝑧𝑤𝑧𝑦) → 𝑤 = 𝑦)
75, 6bj-chvarvv 33314 1 (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wal 1599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-ext 2753
This theorem depends on definitions:  df-bi 199  df-an 387  df-ex 1824
This theorem is referenced by:  bj-axext4  33347
  Copyright terms: Public domain W3C validator