Step | Hyp | Ref
| Expression |
1 | | nfe1 2087 |
. . . . 5
⊢
Ⅎ𝑤∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) |
2 | | nfv 1873 |
. . . . 5
⊢
Ⅎ𝑤∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)) |
3 | 1, 2 | nfim 1859 |
. . . 4
⊢
Ⅎ𝑤(∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |
4 | 3 | nfex 2264 |
. . 3
⊢
Ⅎ𝑤∃𝑥(∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |
5 | | elequ2 2064 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑦)) |
6 | 5 | anbi1d 620 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → ((𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑) ↔ (𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |
7 | 6 | exbidv 1880 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑) ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |
8 | 7 | bibi2d 335 |
. . . . . 6
⊢ (𝑤 = 𝑦 → ((𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑)) ↔ (𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) |
9 | 8 | albidv 1879 |
. . . . 5
⊢ (𝑤 = 𝑦 → (∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑)) ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) |
10 | 9 | imbi2d 333 |
. . . 4
⊢ (𝑤 = 𝑦 → ((∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) ↔ (∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))))) |
11 | 10 | exbidv 1880 |
. . 3
⊢ (𝑤 = 𝑦 → (∃𝑥(∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) ↔ ∃𝑥(∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))))) |
12 | | bj-axrep1 33618 |
. . 3
⊢
∃𝑥(∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) |
13 | 4, 11, 12 | bj-chvarv 33573 |
. 2
⊢
∃𝑥(∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |
14 | | sp 2111 |
. . . . . . 7
⊢
(∀𝑦𝜑 → 𝜑) |
15 | 14 | imim1i 63 |
. . . . . 6
⊢ ((𝜑 → 𝑧 = 𝑦) → (∀𝑦𝜑 → 𝑧 = 𝑦)) |
16 | 15 | alimi 1774 |
. . . . 5
⊢
(∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦)) |
17 | 16 | eximi 1797 |
. . . 4
⊢
(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦)) |
18 | | nfv 1873 |
. . . . 5
⊢
Ⅎ𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) |
19 | | nfa1 2088 |
. . . . . . 7
⊢
Ⅎ𝑦∀𝑦𝜑 |
20 | | nfv 1873 |
. . . . . . 7
⊢
Ⅎ𝑦 𝑧 = 𝑤 |
21 | 19, 20 | nfim 1859 |
. . . . . 6
⊢
Ⅎ𝑦(∀𝑦𝜑 → 𝑧 = 𝑤) |
22 | 21 | nfal 2263 |
. . . . 5
⊢
Ⅎ𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) |
23 | | equequ2 1983 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → (𝑧 = 𝑦 ↔ 𝑧 = 𝑤)) |
24 | 23 | imbi2d 333 |
. . . . . 6
⊢ (𝑦 = 𝑤 → ((∀𝑦𝜑 → 𝑧 = 𝑦) ↔ (∀𝑦𝜑 → 𝑧 = 𝑤))) |
25 | 24 | albidv 1879 |
. . . . 5
⊢ (𝑦 = 𝑤 → (∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) ↔ ∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤))) |
26 | 18, 22, 25 | cbvexv1 2278 |
. . . 4
⊢
(∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) ↔ ∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤)) |
27 | 17, 26 | sylib 210 |
. . 3
⊢
(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤)) |
28 | 27 | imim1i 63 |
. 2
⊢
((∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) → (∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) |
29 | 13, 28 | eximii 1799 |
1
⊢
∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |