Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-bijust0 Structured version   Visualization version   GIF version

Theorem bj-bijust0 32897
Description: The general statement that bijust 195 proves (with a shorter proof). (Contributed by NM, 11-May-1999.) (Proof shortened by Josh Purinton, 29-Dec-2000.) (Revised by BJ, 19-Mar-2020.)
Assertion
Ref Expression
bj-bijust0 ¬ ((𝜑𝜑) → ¬ (𝜑𝜑))

Proof of Theorem bj-bijust0
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
21bj-nimni 32888 1 ¬ ((𝜑𝜑) → ¬ (𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator