![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cbval2v | Structured version Visualization version GIF version |
Description: Version of cbval2 2388 with a disjoint variable condition, which does not require ax-13 2344. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-cbval2v.1 | ⊢ Ⅎ𝑧𝜑 |
bj-cbval2v.2 | ⊢ Ⅎ𝑤𝜑 |
bj-cbval2v.3 | ⊢ Ⅎ𝑥𝜓 |
bj-cbval2v.4 | ⊢ Ⅎ𝑦𝜓 |
bj-cbval2v.5 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
bj-cbval2v | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-cbval2v.1 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
2 | 1 | nfal 2305 | . 2 ⊢ Ⅎ𝑧∀𝑦𝜑 |
3 | bj-cbval2v.3 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | nfal 2305 | . 2 ⊢ Ⅎ𝑥∀𝑤𝜓 |
5 | nfv 1892 | . . . . . 6 ⊢ Ⅎ𝑤 𝑥 = 𝑧 | |
6 | bj-cbval2v.2 | . . . . . 6 ⊢ Ⅎ𝑤𝜑 | |
7 | 5, 6 | nfim 1878 | . . . . 5 ⊢ Ⅎ𝑤(𝑥 = 𝑧 → 𝜑) |
8 | nfv 1892 | . . . . . 6 ⊢ Ⅎ𝑦 𝑥 = 𝑧 | |
9 | bj-cbval2v.4 | . . . . . 6 ⊢ Ⅎ𝑦𝜓 | |
10 | 8, 9 | nfim 1878 | . . . . 5 ⊢ Ⅎ𝑦(𝑥 = 𝑧 → 𝜓) |
11 | bj-cbval2v.5 | . . . . . . 7 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
12 | 11 | expcom 414 | . . . . . 6 ⊢ (𝑦 = 𝑤 → (𝑥 = 𝑧 → (𝜑 ↔ 𝜓))) |
13 | 12 | pm5.74d 274 | . . . . 5 ⊢ (𝑦 = 𝑤 → ((𝑥 = 𝑧 → 𝜑) ↔ (𝑥 = 𝑧 → 𝜓))) |
14 | 7, 10, 13 | cbvalv1 2320 | . . . 4 ⊢ (∀𝑦(𝑥 = 𝑧 → 𝜑) ↔ ∀𝑤(𝑥 = 𝑧 → 𝜓)) |
15 | 19.21v 1917 | . . . 4 ⊢ (∀𝑦(𝑥 = 𝑧 → 𝜑) ↔ (𝑥 = 𝑧 → ∀𝑦𝜑)) | |
16 | 19.21v 1917 | . . . 4 ⊢ (∀𝑤(𝑥 = 𝑧 → 𝜓) ↔ (𝑥 = 𝑧 → ∀𝑤𝜓)) | |
17 | 14, 15, 16 | 3bitr3i 302 | . . 3 ⊢ ((𝑥 = 𝑧 → ∀𝑦𝜑) ↔ (𝑥 = 𝑧 → ∀𝑤𝜓)) |
18 | 17 | pm5.74ri 273 | . 2 ⊢ (𝑥 = 𝑧 → (∀𝑦𝜑 ↔ ∀𝑤𝜓)) |
19 | 2, 4, 18 | cbvalv1 2320 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∀wal 1520 Ⅎwnf 1765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-10 2112 ax-11 2126 ax-12 2141 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1762 df-nf 1766 |
This theorem is referenced by: bj-cbvex2v 33669 bj-cbval2vv 33670 |
Copyright terms: Public domain | W3C validator |