Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-cbval2v Structured version   Visualization version   GIF version

Theorem bj-cbval2v 33668
 Description: Version of cbval2 2388 with a disjoint variable condition, which does not require ax-13 2344. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-cbval2v.1 𝑧𝜑
bj-cbval2v.2 𝑤𝜑
bj-cbval2v.3 𝑥𝜓
bj-cbval2v.4 𝑦𝜓
bj-cbval2v.5 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))
Assertion
Ref Expression
bj-cbval2v (∀𝑥𝑦𝜑 ↔ ∀𝑧𝑤𝜓)
Distinct variable group:   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem bj-cbval2v
StepHypRef Expression
1 bj-cbval2v.1 . . 3 𝑧𝜑
21nfal 2305 . 2 𝑧𝑦𝜑
3 bj-cbval2v.3 . . 3 𝑥𝜓
43nfal 2305 . 2 𝑥𝑤𝜓
5 nfv 1892 . . . . . 6 𝑤 𝑥 = 𝑧
6 bj-cbval2v.2 . . . . . 6 𝑤𝜑
75, 6nfim 1878 . . . . 5 𝑤(𝑥 = 𝑧𝜑)
8 nfv 1892 . . . . . 6 𝑦 𝑥 = 𝑧
9 bj-cbval2v.4 . . . . . 6 𝑦𝜓
108, 9nfim 1878 . . . . 5 𝑦(𝑥 = 𝑧𝜓)
11 bj-cbval2v.5 . . . . . . 7 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))
1211expcom 414 . . . . . 6 (𝑦 = 𝑤 → (𝑥 = 𝑧 → (𝜑𝜓)))
1312pm5.74d 274 . . . . 5 (𝑦 = 𝑤 → ((𝑥 = 𝑧𝜑) ↔ (𝑥 = 𝑧𝜓)))
147, 10, 13cbvalv1 2320 . . . 4 (∀𝑦(𝑥 = 𝑧𝜑) ↔ ∀𝑤(𝑥 = 𝑧𝜓))
15 19.21v 1917 . . . 4 (∀𝑦(𝑥 = 𝑧𝜑) ↔ (𝑥 = 𝑧 → ∀𝑦𝜑))
16 19.21v 1917 . . . 4 (∀𝑤(𝑥 = 𝑧𝜓) ↔ (𝑥 = 𝑧 → ∀𝑤𝜓))
1714, 15, 163bitr3i 302 . . 3 ((𝑥 = 𝑧 → ∀𝑦𝜑) ↔ (𝑥 = 𝑧 → ∀𝑤𝜓))
1817pm5.74ri 273 . 2 (𝑥 = 𝑧 → (∀𝑦𝜑 ↔ ∀𝑤𝜓))
192, 4, 18cbvalv1 2320 1 (∀𝑥𝑦𝜑 ↔ ∀𝑧𝑤𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396  ∀wal 1520  Ⅎwnf 1765 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-10 2112  ax-11 2126  ax-12 2141 This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1762  df-nf 1766 This theorem is referenced by:  bj-cbvex2v  33669  bj-cbval2vv  33670
 Copyright terms: Public domain W3C validator