Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-clabel Structured version   Visualization version   GIF version

Theorem bj-clabel 33213
 Description: Remove dependency on ax-13 2352 from clabel 2892 (note the absence of disjoint variable conditions among variables in the LHS). (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-clabel ({𝑥𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦𝐴 ∧ ∀𝑥(𝑥𝑦𝜑)))
Distinct variable groups:   𝑦,𝐴   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem bj-clabel
StepHypRef Expression
1 df-clel 2761 . 2 ({𝑥𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 = {𝑥𝜑} ∧ 𝑦𝐴))
2 bj-abeq2 33203 . . . 4 (𝑦 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝑦𝜑))
32anbi2ci 618 . . 3 ((𝑦 = {𝑥𝜑} ∧ 𝑦𝐴) ↔ (𝑦𝐴 ∧ ∀𝑥(𝑥𝑦𝜑)))
43exbii 1943 . 2 (∃𝑦(𝑦 = {𝑥𝜑} ∧ 𝑦𝐴) ↔ ∃𝑦(𝑦𝐴 ∧ ∀𝑥(𝑥𝑦𝜑)))
51, 4bitri 266 1 ({𝑥𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦𝐴 ∧ ∀𝑥(𝑥𝑦𝜑)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 197   ∧ wa 384  ∀wal 1650   = wceq 1652  ∃wex 1874   ∈ wcel 2155  {cab 2751 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-ext 2743 This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-clab 2752  df-cleq 2758  df-clel 2761 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator