![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-drex1v | Structured version Visualization version GIF version |
Description: Version of drex1 2377 with a disjoint variable condition, which does not require ax-13 2301. (Contributed by BJ, 17-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-drex1v.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
bj-drex1v | ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 ↔ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-drex1v.1 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 310 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | bj-dral1v 33593 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓)) |
4 | 3 | notbid 310 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓)) |
5 | df-ex 1743 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
6 | df-ex 1743 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
7 | 4, 5, 6 | 3bitr4g 306 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 ↔ ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∀wal 1505 ∃wex 1742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-10 2079 ax-12 2106 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-ex 1743 df-nf 1747 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |