Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dtrucor Structured version   Visualization version   GIF version

Theorem bj-dtrucor 33326
Description: Remove dependency on ax-13 2391 from dtrucor 5072. (Contributed by BJ, 16-Jul-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-dtrucor.1 𝑥 = 𝑦
Assertion
Ref Expression
bj-dtrucor 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-dtrucor
StepHypRef Expression
1 bj-dtru 33323 . . 3 ¬ ∀𝑥 𝑥 = 𝑦
21pm2.21i 117 . 2 (∀𝑥 𝑥 = 𝑦𝑥𝑦)
3 bj-dtrucor.1 . 2 𝑥 = 𝑦
42, 3mpg 1898 1 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wal 1656  wne 3000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-nul 5014  ax-pow 5066
This theorem depends on definitions:  df-bi 199  df-an 387  df-tru 1662  df-ex 1881  df-nf 1885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator