![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-dvdemo1 | Structured version Visualization version GIF version |
Description: Remove dependency on ax-13 2301 from dvdemo1 5121 (this removal is noteworthy since dvdemo1 5121 and dvdemo2 5122 illustrate the phenomenon of bundling). (Contributed by BJ, 16-Jul-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-dvdemo1 | ⊢ ∃𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-dtru 33625 | . . 3 ⊢ ¬ ∀𝑥 𝑥 = 𝑦 | |
2 | exnal 1789 | . . 3 ⊢ (∃𝑥 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) | |
3 | 1, 2 | mpbir 223 | . 2 ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 |
4 | pm2.21 121 | . 2 ⊢ (¬ 𝑥 = 𝑦 → (𝑥 = 𝑦 → 𝑧 ∈ 𝑥)) | |
5 | 3, 4 | eximii 1799 | 1 ⊢ ∃𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1505 ∃wex 1742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-12 2106 ax-nul 5061 ax-pow 5113 |
This theorem depends on definitions: df-bi 199 df-an 388 df-ex 1743 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |