![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elid | Structured version Visualization version GIF version |
Description: Characterization of the elements of I. (Contributed by BJ, 22-Jun-2019.) |
Ref | Expression |
---|---|
bj-elid | ⊢ (𝐴 ∈ I ↔ (𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = (2nd ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli 5495 | . . . . 5 ⊢ Rel I | |
2 | df-rel 5362 | . . . . 5 ⊢ (Rel I ↔ I ⊆ (V × V)) | |
3 | 1, 2 | mpbi 222 | . . . 4 ⊢ I ⊆ (V × V) |
4 | 3 | sseli 3817 | . . 3 ⊢ (𝐴 ∈ I → 𝐴 ∈ (V × V)) |
5 | 1st2nd2 7484 | . . . . . . 7 ⊢ (𝐴 ∈ (V × V) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ I → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
7 | 6 | eleq1d 2844 | . . . . 5 ⊢ (𝐴 ∈ I → (𝐴 ∈ I ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ I )) |
8 | 7 | ibi 259 | . . . 4 ⊢ (𝐴 ∈ I → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ I ) |
9 | df-id 5261 | . . . . . 6 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
10 | 9 | eleq2i 2851 | . . . . 5 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ I ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦}) |
11 | fvex 6459 | . . . . . 6 ⊢ (1st ‘𝐴) ∈ V | |
12 | fvex 6459 | . . . . . 6 ⊢ (2nd ‘𝐴) ∈ V | |
13 | eqeq12 2791 | . . . . . 6 ⊢ ((𝑥 = (1st ‘𝐴) ∧ 𝑦 = (2nd ‘𝐴)) → (𝑥 = 𝑦 ↔ (1st ‘𝐴) = (2nd ‘𝐴))) | |
14 | 11, 12, 13 | opelopaba 5228 | . . . . 5 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} ↔ (1st ‘𝐴) = (2nd ‘𝐴)) |
15 | 10, 14 | bitri 267 | . . . 4 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ I ↔ (1st ‘𝐴) = (2nd ‘𝐴)) |
16 | 8, 15 | sylib 210 | . . 3 ⊢ (𝐴 ∈ I → (1st ‘𝐴) = (2nd ‘𝐴)) |
17 | 4, 16 | jca 507 | . 2 ⊢ (𝐴 ∈ I → (𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = (2nd ‘𝐴))) |
18 | 5 | eleq1d 2844 | . . . . 5 ⊢ (𝐴 ∈ (V × V) → (𝐴 ∈ I ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ I )) |
19 | 18 | biimprd 240 | . . . 4 ⊢ (𝐴 ∈ (V × V) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ I → 𝐴 ∈ I )) |
20 | 15, 19 | syl5bir 235 | . . 3 ⊢ (𝐴 ∈ (V × V) → ((1st ‘𝐴) = (2nd ‘𝐴) → 𝐴 ∈ I )) |
21 | 20 | imp 397 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = (2nd ‘𝐴)) → 𝐴 ∈ I ) |
22 | 17, 21 | impbii 201 | 1 ⊢ (𝐴 ∈ I ↔ (𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = (2nd ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 Vcvv 3398 ⊆ wss 3792 〈cop 4404 {copab 4948 I cid 5260 × cxp 5353 Rel wrel 5360 ‘cfv 6135 1st c1st 7443 2nd c2nd 7444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-iota 6099 df-fun 6137 df-fv 6143 df-1st 7445 df-2nd 7446 |
This theorem is referenced by: bj-elid2 33664 bj-elid3 33665 |
Copyright terms: Public domain | W3C validator |