![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-intss | Structured version Visualization version GIF version |
Description: A nonempty intersection of a family of subsets of a class is included in that class. (Contributed by BJ, 7-Dec-2021.) |
Ref | Expression |
---|---|
bj-intss | ⊢ (𝐴 ⊆ 𝒫 𝑋 → (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwuni 4845 | . . 3 ⊢ (𝐴 ⊆ 𝒫 𝑋 ↔ ∪ 𝐴 ⊆ 𝑋) | |
2 | 1 | biimpi 208 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝑋 → ∪ 𝐴 ⊆ 𝑋) |
3 | intssuni 4732 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) | |
4 | sstr 3829 | . . 3 ⊢ ((∩ 𝐴 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑋) → ∩ 𝐴 ⊆ 𝑋) | |
5 | 4 | expcom 404 | . 2 ⊢ (∪ 𝐴 ⊆ 𝑋 → (∩ 𝐴 ⊆ ∪ 𝐴 → ∩ 𝐴 ⊆ 𝑋)) |
6 | 2, 3, 5 | syl2im 40 | 1 ⊢ (𝐴 ⊆ 𝒫 𝑋 → (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ≠ wne 2969 ⊆ wss 3792 ∅c0 4141 𝒫 cpw 4379 ∪ cuni 4671 ∩ cint 4710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-v 3400 df-dif 3795 df-in 3799 df-ss 3806 df-nul 4142 df-pw 4381 df-uni 4672 df-int 4711 |
This theorem is referenced by: bj-0int 33628 |
Copyright terms: Public domain | W3C validator |