Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-intss Structured version   Visualization version   GIF version

Theorem bj-intss 33626
Description: A nonempty intersection of a family of subsets of a class is included in that class. (Contributed by BJ, 7-Dec-2021.)
Assertion
Ref Expression
bj-intss (𝐴 ⊆ 𝒫 𝑋 → (𝐴 ≠ ∅ → 𝐴𝑋))

Proof of Theorem bj-intss
StepHypRef Expression
1 sspwuni 4845 . . 3 (𝐴 ⊆ 𝒫 𝑋 𝐴𝑋)
21biimpi 208 . 2 (𝐴 ⊆ 𝒫 𝑋 𝐴𝑋)
3 intssuni 4732 . 2 (𝐴 ≠ ∅ → 𝐴 𝐴)
4 sstr 3829 . . 3 (( 𝐴 𝐴 𝐴𝑋) → 𝐴𝑋)
54expcom 404 . 2 ( 𝐴𝑋 → ( 𝐴 𝐴 𝐴𝑋))
62, 3, 5syl2im 40 1 (𝐴 ⊆ 𝒫 𝑋 → (𝐴 ≠ ∅ → 𝐴𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wne 2969  wss 3792  c0 4141  𝒫 cpw 4379   cuni 4671   cint 4710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-v 3400  df-dif 3795  df-in 3799  df-ss 3806  df-nul 4142  df-pw 4381  df-uni 4672  df-int 4711
This theorem is referenced by:  bj-0int  33628
  Copyright terms: Public domain W3C validator