Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ismoorec Structured version   Visualization version   GIF version

Theorem bj-ismoorec 33388
 Description: Characterization of Moore collections. (Contributed by BJ, 9-Dec-2021.)
Assertion
Ref Expression
bj-ismoorec (𝐴Moore ↔ (𝐴 ∈ V ∧ ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-ismoorec
StepHypRef Expression
1 elex 3363 . 2 (𝐴Moore𝐴 ∈ V)
2 bj-ismoore 33387 . 2 (𝐴 ∈ V → (𝐴Moore ↔ ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴))
31, 2biadan2 802 1 (𝐴Moore ↔ (𝐴 ∈ V ∧ ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 382   ∈ wcel 2145  ∀wral 3061  Vcvv 3351   ∩ cin 3722  𝒫 cpw 4297  ∪ cuni 4574  ∩ cint 4611  Moorecmoore 33385 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-v 3353  df-in 3730  df-ss 3737  df-pw 4299  df-uni 4575  df-bj-moore 33386 This theorem is referenced by:  bj-ismoored  33390
 Copyright terms: Public domain W3C validator