Step | Hyp | Ref
| Expression |
1 | | df-mo 2605 |
. . 3
⊢
(∃*𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧)) |
2 | | bj-mo3OLD.nf |
. . . . . . . . 9
⊢
Ⅎ𝑦𝜑 |
3 | | nfv 2013 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑥 = 𝑧 |
4 | 2, 3 | nfim 1999 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝜑 → 𝑥 = 𝑧) |
5 | | nfs1v 2311 |
. . . . . . . . 9
⊢
Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
6 | | nfv 2013 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑦 = 𝑧 |
7 | 5, 6 | nfim 1999 |
. . . . . . . 8
⊢
Ⅎ𝑥([𝑦 / 𝑥]𝜑 → 𝑦 = 𝑧) |
8 | | sbequ2 2069 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) |
9 | | ax7 2120 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) |
10 | 8, 9 | imim12d 81 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝜑 → 𝑥 = 𝑧) → ([𝑦 / 𝑥]𝜑 → 𝑦 = 𝑧))) |
11 | 4, 7, 10 | cbv3 2417 |
. . . . . . 7
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑦 = 𝑧)) |
12 | 11 | ancli 544 |
. . . . . 6
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → (∀𝑥(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑦 = 𝑧))) |
13 | 4, 7 | aaan 2363 |
. . . . . 6
⊢
(∀𝑥∀𝑦((𝜑 → 𝑥 = 𝑧) ∧ ([𝑦 / 𝑥]𝜑 → 𝑦 = 𝑧)) ↔ (∀𝑥(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑦 = 𝑧))) |
14 | 12, 13 | sylibr 226 |
. . . . 5
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → ∀𝑥∀𝑦((𝜑 → 𝑥 = 𝑧) ∧ ([𝑦 / 𝑥]𝜑 → 𝑦 = 𝑧))) |
15 | | prth 843 |
. . . . . . 7
⊢ (((𝜑 → 𝑥 = 𝑧) ∧ ([𝑦 / 𝑥]𝜑 → 𝑦 = 𝑧)) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑧))) |
16 | | equtr2 2131 |
. . . . . . 7
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑦) |
17 | 15, 16 | syl6 35 |
. . . . . 6
⊢ (((𝜑 → 𝑥 = 𝑧) ∧ ([𝑦 / 𝑥]𝜑 → 𝑦 = 𝑧)) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
18 | 17 | 2alimi 1911 |
. . . . 5
⊢
(∀𝑥∀𝑦((𝜑 → 𝑥 = 𝑧) ∧ ([𝑦 / 𝑥]𝜑 → 𝑦 = 𝑧)) → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
19 | 14, 18 | syl 17 |
. . . 4
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
20 | 19 | exlimiv 2029 |
. . 3
⊢
(∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧) → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
21 | 1, 20 | sylbi 209 |
. 2
⊢
(∃*𝑥𝜑 → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
22 | | nfa1 2202 |
. . . . . 6
⊢
Ⅎ𝑦∀𝑦∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) |
23 | | pm3.3 441 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (𝜑 → ([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
24 | 23 | com3r 87 |
. . . . . . . . 9
⊢ ([𝑦 / 𝑥]𝜑 → (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦))) |
25 | 5, 24 | alimd 2255 |
. . . . . . . 8
⊢ ([𝑦 / 𝑥]𝜑 → (∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∀𝑥(𝜑 → 𝑥 = 𝑦))) |
26 | 25 | com12 32 |
. . . . . . 7
⊢
(∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦))) |
27 | 26 | sps 2226 |
. . . . . 6
⊢
(∀𝑦∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦))) |
28 | 22, 27 | eximd 2259 |
. . . . 5
⊢
(∀𝑦∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (∃𝑦[𝑦 / 𝑥]𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
29 | 2 | sb8e 2557 |
. . . . 5
⊢
(∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
30 | 2 | mof 2631 |
. . . . 5
⊢
(∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
31 | 28, 29, 30 | 3imtr4g 288 |
. . . 4
⊢
(∀𝑦∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (∃𝑥𝜑 → ∃*𝑥𝜑)) |
32 | | moabs 2609 |
. . . 4
⊢
(∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑)) |
33 | 31, 32 | sylibr 226 |
. . 3
⊢
(∀𝑦∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃*𝑥𝜑) |
34 | 33 | alcoms 2208 |
. 2
⊢
(∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃*𝑥𝜑) |
35 | 21, 34 | impbii 201 |
1
⊢
(∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |