Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfab1 Structured version   Visualization version   GIF version

Theorem bj-nfab1 33147
Description: Remove dependency on ax-13 2352 from nfab1 2909 (note the absence of disjoint variable conditions). (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nfab1 𝑥{𝑥𝜑}

Proof of Theorem bj-nfab1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bj-nfsab1 33134 . 2 𝑥 𝑦 ∈ {𝑥𝜑}
21nfci 2897 1 𝑥{𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  {cab 2751  wnfc 2894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-10 2183  ax-12 2211
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-ex 1875  df-nf 1879  df-sb 2062  df-clab 2752  df-nfc 2896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator