Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rabtrALTALT Structured version   Visualization version   GIF version

Theorem bj-rabtrALTALT 33356
 Description: Alternate proof of bj-rabtr 33354. (Contributed by BJ, 22-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-rabtrALTALT {𝑥𝐴 ∣ ⊤} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-rabtrALTALT
StepHypRef Expression
1 ssrab2 3847 . 2 {𝑥𝐴 ∣ ⊤} ⊆ 𝐴
2 ssid 3783 . . 3 𝐴𝐴
3 tru 1657 . . . 4
43rgenw 3071 . . 3 𝑥𝐴
5 ssrab 3840 . . 3 (𝐴 ⊆ {𝑥𝐴 ∣ ⊤} ↔ (𝐴𝐴 ∧ ∀𝑥𝐴 ⊤))
62, 4, 5mpbir2an 702 . 2 𝐴 ⊆ {𝑥𝐴 ∣ ⊤}
71, 6eqssi 3777 1 {𝑥𝐴 ∣ ⊤} = 𝐴
 Colors of variables: wff setvar class Syntax hints:   = wceq 1652  ⊤wtru 1653  ∀wral 3055  {crab 3059   ⊆ wss 3732 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743 This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rab 3064  df-in 3739  df-ss 3746 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator