Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sb3v Structured version   Visualization version   GIF version

Theorem bj-sb3v 33353
 Description: Version of sb3 2429 with a disjoint variable condition, which does not require ax-13 2333. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-sb3v (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-sb3v
StepHypRef Expression
1 sb56 2247 . 2 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
2 sb2v 2242 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
31, 2sylbi 209 1 (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386  ∀wal 1599  ∃wex 1823  [wsb 2011 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-10 2134  ax-12 2162 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-ex 1824  df-nf 1828  df-sb 2012 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator