Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sbab Structured version   Visualization version   GIF version

Theorem bj-sbab 33279
 Description: Remove dependency on ax-13 2378 from sbab 2928 (note the absence of disjoint variable conditions among variables in the LHS). (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-sbab (𝑥 = 𝑦𝐴 = {𝑧 ∣ [𝑦 / 𝑥]𝑧𝐴})
Distinct variable groups:   𝑧,𝐴   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem bj-sbab
StepHypRef Expression
1 sbequ12 2278 . 2 (𝑥 = 𝑦 → (𝑧𝐴 ↔ [𝑦 / 𝑥]𝑧𝐴))
21bj-abbi2dv 33275 1 (𝑥 = 𝑦𝐴 = {𝑧 ∣ [𝑦 / 𝑥]𝑧𝐴})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1653  [wsb 2064   ∈ wcel 2157  {cab 2786 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-ext 2778 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2787  df-cleq 2793  df-clel 2796 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator