![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-spimev | Structured version Visualization version GIF version |
Description: Version of spime 2396 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-spimev.1 | ⊢ Ⅎ𝑥𝜑 |
bj-spimev.2 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
bj-spimev | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-spimev.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
3 | bj-spimev.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
4 | 2, 3 | bj-spimedv 33217 | . 2 ⊢ (⊤ → (𝜑 → ∃𝑥𝜓)) |
5 | 4 | mptru 1661 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊤wtru 1654 ∃wex 1875 Ⅎwnf 1879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-12 2213 |
This theorem depends on definitions: df-bi 199 df-tru 1657 df-ex 1876 df-nf 1880 |
This theorem is referenced by: bj-spimevv 33220 |
Copyright terms: Public domain | W3C validator |