Step | Hyp | Ref
| Expression |
1 | | df-ssb 33156 |
. . 3
⊢ ([𝑡/𝑥]b𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
2 | | sp 2224 |
. . . . . 6
⊢
(∀𝑥(𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜑)) |
3 | 2 | imim2i 16 |
. . . . 5
⊢ ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → (𝑦 = 𝑡 → (𝑥 = 𝑦 → 𝜑))) |
4 | 3 | alimi 1910 |
. . . 4
⊢
(∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ∀𝑦(𝑦 = 𝑡 → (𝑥 = 𝑦 → 𝜑))) |
5 | | pm3.31 442 |
. . . . 5
⊢ ((𝑦 = 𝑡 → (𝑥 = 𝑦 → 𝜑)) → ((𝑦 = 𝑡 ∧ 𝑥 = 𝑦) → 𝜑)) |
6 | 5 | alimi 1910 |
. . . 4
⊢
(∀𝑦(𝑦 = 𝑡 → (𝑥 = 𝑦 → 𝜑)) → ∀𝑦((𝑦 = 𝑡 ∧ 𝑥 = 𝑦) → 𝜑)) |
7 | | 19.23v 2041 |
. . . . 5
⊢
(∀𝑦((𝑦 = 𝑡 ∧ 𝑥 = 𝑦) → 𝜑) ↔ (∃𝑦(𝑦 = 𝑡 ∧ 𝑥 = 𝑦) → 𝜑)) |
8 | | equvinva 2136 |
. . . . . . 7
⊢ (𝑥 = 𝑡 → ∃𝑦(𝑥 = 𝑦 ∧ 𝑡 = 𝑦)) |
9 | | biid 253 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 ↔ 𝑥 = 𝑦) |
10 | | equcom 2122 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑦 ↔ 𝑦 = 𝑡) |
11 | 9, 10 | anbi12ci 621 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑦 ∧ 𝑡 = 𝑦) ↔ (𝑦 = 𝑡 ∧ 𝑥 = 𝑦)) |
12 | 11 | biimpi 208 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑦 ∧ 𝑡 = 𝑦) → (𝑦 = 𝑡 ∧ 𝑥 = 𝑦)) |
13 | 12 | eximi 1933 |
. . . . . . . . 9
⊢
(∃𝑦(𝑥 = 𝑦 ∧ 𝑡 = 𝑦) → ∃𝑦(𝑦 = 𝑡 ∧ 𝑥 = 𝑦)) |
14 | | pm3.35 837 |
. . . . . . . . 9
⊢
((∃𝑦(𝑦 = 𝑡 ∧ 𝑥 = 𝑦) ∧ (∃𝑦(𝑦 = 𝑡 ∧ 𝑥 = 𝑦) → 𝜑)) → 𝜑) |
15 | 13, 14 | sylan 575 |
. . . . . . . 8
⊢
((∃𝑦(𝑥 = 𝑦 ∧ 𝑡 = 𝑦) ∧ (∃𝑦(𝑦 = 𝑡 ∧ 𝑥 = 𝑦) → 𝜑)) → 𝜑) |
16 | 15 | ancoms 452 |
. . . . . . 7
⊢
(((∃𝑦(𝑦 = 𝑡 ∧ 𝑥 = 𝑦) → 𝜑) ∧ ∃𝑦(𝑥 = 𝑦 ∧ 𝑡 = 𝑦)) → 𝜑) |
17 | 8, 16 | sylan2 586 |
. . . . . 6
⊢
(((∃𝑦(𝑦 = 𝑡 ∧ 𝑥 = 𝑦) → 𝜑) ∧ 𝑥 = 𝑡) → 𝜑) |
18 | 17 | ex 403 |
. . . . 5
⊢
((∃𝑦(𝑦 = 𝑡 ∧ 𝑥 = 𝑦) → 𝜑) → (𝑥 = 𝑡 → 𝜑)) |
19 | 7, 18 | sylbi 209 |
. . . 4
⊢
(∀𝑦((𝑦 = 𝑡 ∧ 𝑥 = 𝑦) → 𝜑) → (𝑥 = 𝑡 → 𝜑)) |
20 | 4, 6, 19 | 3syl 18 |
. . 3
⊢
(∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → (𝑥 = 𝑡 → 𝜑)) |
21 | 1, 20 | sylbi 209 |
. 2
⊢ ([𝑡/𝑥]b𝜑 → (𝑥 = 𝑡 → 𝜑)) |
22 | 21 | com12 32 |
1
⊢ (𝑥 = 𝑡 → ([𝑡/𝑥]b𝜑 → 𝜑)) |