![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ssbft | Structured version Visualization version GIF version |
Description: See sbft 2510. This proof is from Tarski's FOL together with sp 2226 (and its dual). (Contributed by BJ, 22-Dec-2020.) |
Ref | Expression |
---|---|
bj-ssbft | ⊢ (Ⅎ𝑥𝜑 → ([𝑡/𝑥]b𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-sbex 33163 | . . 3 ⊢ ([𝑡/𝑥]b𝜑 → ∃𝑥𝜑) | |
2 | df-nf 1885 | . . . 4 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
3 | 2 | biimpi 208 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑)) |
4 | sp 2226 | . . 3 ⊢ (∀𝑥𝜑 → 𝜑) | |
5 | 1, 3, 4 | syl56 36 | . 2 ⊢ (Ⅎ𝑥𝜑 → ([𝑡/𝑥]b𝜑 → 𝜑)) |
6 | 19.8a 2225 | . . 3 ⊢ (𝜑 → ∃𝑥𝜑) | |
7 | bj-alsb 33162 | . . 3 ⊢ (∀𝑥𝜑 → [𝑡/𝑥]b𝜑) | |
8 | 6, 3, 7 | syl56 36 | . 2 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → [𝑡/𝑥]b𝜑)) |
9 | 5, 8 | impbid 204 | 1 ⊢ (Ⅎ𝑥𝜑 → ([𝑡/𝑥]b𝜑 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1656 ∃wex 1880 Ⅎwnf 1884 [wssb 33156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-12 2222 |
This theorem depends on definitions: df-bi 199 df-ex 1881 df-nf 1885 df-ssb 33157 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |