Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ssbft Structured version   Visualization version   GIF version

Theorem bj-ssbft 33178
Description: See sbft 2510. This proof is from Tarski's FOL together with sp 2226 (and its dual). (Contributed by BJ, 22-Dec-2020.)
Assertion
Ref Expression
bj-ssbft (Ⅎ𝑥𝜑 → ([𝑡/𝑥]b𝜑𝜑))

Proof of Theorem bj-ssbft
StepHypRef Expression
1 bj-sbex 33163 . . 3 ([𝑡/𝑥]b𝜑 → ∃𝑥𝜑)
2 df-nf 1885 . . . 4 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
32biimpi 208 . . 3 (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑))
4 sp 2226 . . 3 (∀𝑥𝜑𝜑)
51, 3, 4syl56 36 . 2 (Ⅎ𝑥𝜑 → ([𝑡/𝑥]b𝜑𝜑))
6 19.8a 2225 . . 3 (𝜑 → ∃𝑥𝜑)
7 bj-alsb 33162 . . 3 (∀𝑥𝜑 → [𝑡/𝑥]b𝜑)
86, 3, 7syl56 36 . 2 (Ⅎ𝑥𝜑 → (𝜑 → [𝑡/𝑥]b𝜑))
95, 8impbid 204 1 (Ⅎ𝑥𝜑 → ([𝑡/𝑥]b𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wal 1656  wex 1880  wnf 1884  [wssb 33156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-12 2222
This theorem depends on definitions:  df-bi 199  df-ex 1881  df-nf 1885  df-ssb 33157
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator