Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-vexwv Structured version   Visualization version   GIF version

Theorem bj-vexwv 33281
Description: Version of bj-vexw 33279 with a disjoint variable condition, which does not require ax-13 2352. The degenerate instance of bj-vexw 33279 is a simple consequence of abid 2753 (which does not depend on ax-13 2352 either). (Contributed by BJ, 13-Jun-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-vexwv.1 𝜑
Assertion
Ref Expression
bj-vexwv 𝑦 ∈ {𝑥𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-vexwv
StepHypRef Expression
1 bj-vexwvt 33280 . 2 (∀𝑥𝜑𝑦 ∈ {𝑥𝜑})
2 bj-vexwv.1 . 2 𝜑
31, 2mpg 1892 1 𝑦 ∈ {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wcel 2155  {cab 2751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-12 2211
This theorem depends on definitions:  df-bi 198  df-an 385  df-ex 1875  df-sb 2063  df-clab 2752
This theorem is referenced by:  bj-denotes  33282  bj-rexvwv  33291  bj-rababwv  33292  bj-df-v  33443
  Copyright terms: Public domain W3C validator