![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brinxp2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of brinxp2 5426 as of 18-Sep-2022. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
brinxp2OLD | ⊢ (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brin 4938 | . 2 ⊢ (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴(𝐶 × 𝐷)𝐵)) | |
2 | ancom 454 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ 𝐴(𝐶 × 𝐷)𝐵) ↔ (𝐴(𝐶 × 𝐷)𝐵 ∧ 𝐴𝑅𝐵)) | |
3 | brxp 5401 | . . . 4 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
4 | 3 | anbi1i 617 | . . 3 ⊢ ((𝐴(𝐶 × 𝐷)𝐵 ∧ 𝐴𝑅𝐵) ↔ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴𝑅𝐵)) |
5 | df-3an 1073 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) ↔ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴𝑅𝐵)) | |
6 | 4, 5 | bitr4i 270 | . 2 ⊢ ((𝐴(𝐶 × 𝐷)𝐵 ∧ 𝐴𝑅𝐵) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵)) |
7 | 1, 2, 6 | 3bitri 289 | 1 ⊢ (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 ∧ w3a 1071 ∈ wcel 2106 ∩ cin 3790 class class class wbr 4886 × cxp 5353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-br 4887 df-opab 4949 df-xp 5361 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |