Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  calemesOLD Structured version   Visualization version   GIF version

Theorem calemesOLD 2777
 Description: Obsolete proof of calemes 2776 as of 27-Sep-2022. (Contributed by David A. Wheeler, 27-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
calemes.maj 𝑥(𝜑𝜓)
calemes.min 𝑥(𝜓 → ¬ 𝜒)
Assertion
Ref Expression
calemesOLD 𝑥(𝜒 → ¬ 𝜑)

Proof of Theorem calemesOLD
StepHypRef Expression
1 calemes.min . . . . 5 𝑥(𝜓 → ¬ 𝜒)
21spi 2225 . . . 4 (𝜓 → ¬ 𝜒)
32con2i 137 . . 3 (𝜒 → ¬ 𝜓)
4 calemes.maj . . . 4 𝑥(𝜑𝜓)
54spi 2225 . . 3 (𝜑𝜓)
63, 5nsyl 138 . 2 (𝜒 → ¬ 𝜑)
76ax-gen 1894 1 𝑥(𝜒 → ¬ 𝜑)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1654 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-12 2220 This theorem depends on definitions:  df-bi 199  df-ex 1879 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator