![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > calemesOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of calemes 2776 as of 27-Sep-2022. (Contributed by David A. Wheeler, 27-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
calemes.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
calemes.min | ⊢ ∀𝑥(𝜓 → ¬ 𝜒) |
Ref | Expression |
---|---|
calemesOLD | ⊢ ∀𝑥(𝜒 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | calemes.min | . . . . 5 ⊢ ∀𝑥(𝜓 → ¬ 𝜒) | |
2 | 1 | spi 2225 | . . . 4 ⊢ (𝜓 → ¬ 𝜒) |
3 | 2 | con2i 137 | . . 3 ⊢ (𝜒 → ¬ 𝜓) |
4 | calemes.maj | . . . 4 ⊢ ∀𝑥(𝜑 → 𝜓) | |
5 | 4 | spi 2225 | . . 3 ⊢ (𝜑 → 𝜓) |
6 | 3, 5 | nsyl 138 | . 2 ⊢ (𝜒 → ¬ 𝜑) |
7 | 6 | ax-gen 1894 | 1 ⊢ ∀𝑥(𝜒 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-12 2220 |
This theorem depends on definitions: df-bi 199 df-ex 1879 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |