Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  camestresOLD Structured version   Visualization version   GIF version

Theorem camestresOLD 2732
 Description: Obsolete proof of camestres 2731 as of 27-Sep-2022. (Contributed by David A. Wheeler, 27-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
camestres.maj 𝑥(𝜑𝜓)
camestres.min 𝑥(𝜒 → ¬ 𝜓)
Assertion
Ref Expression
camestresOLD 𝑥(𝜒 → ¬ 𝜑)

Proof of Theorem camestresOLD
StepHypRef Expression
1 camestres.min . . . 4 𝑥(𝜒 → ¬ 𝜓)
21spi 2218 . . 3 (𝜒 → ¬ 𝜓)
3 camestres.maj . . . 4 𝑥(𝜑𝜓)
43spi 2218 . . 3 (𝜑𝜓)
52, 4nsyl 138 . 2 (𝜒 → ¬ 𝜑)
65ax-gen 1891 1 𝑥(𝜒 → ¬ 𝜑)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1651 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-12 2213 This theorem depends on definitions:  df-bi 199  df-ex 1876 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator