MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  camestrosOLD Structured version   Visualization version   GIF version

Theorem camestrosOLD 2715
Description: Obsolete proof of camestros 2714 as of 27-Sep-2022. (Contributed by David A. Wheeler, 27-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
camestros.maj 𝑥(𝜑𝜓)
camestros.min 𝑥(𝜒 → ¬ 𝜓)
camestros.e 𝑥𝜒
Assertion
Ref Expression
camestrosOLD 𝑥(𝜒 ∧ ¬ 𝜑)

Proof of Theorem camestrosOLD
StepHypRef Expression
1 camestros.e . 2 𝑥𝜒
2 camestros.min . . . . 5 𝑥(𝜒 → ¬ 𝜓)
32spi 2168 . . . 4 (𝜒 → ¬ 𝜓)
4 camestros.maj . . . . 5 𝑥(𝜑𝜓)
54spi 2168 . . . 4 (𝜑𝜓)
63, 5nsyl 138 . . 3 (𝜒 → ¬ 𝜑)
76ancli 544 . 2 (𝜒 → (𝜒 ∧ ¬ 𝜑))
81, 7eximii 1880 1 𝑥(𝜒 ∧ ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  wal 1599  wex 1823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-12 2163
This theorem depends on definitions:  df-bi 199  df-an 387  df-ex 1824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator