![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cdacomen | Structured version Visualization version GIF version |
Description: Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
cdacomen | ⊢ (𝐴 +𝑐 𝐵) ≈ (𝐵 +𝑐 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 7833 | . . . . 5 ⊢ 1o ∈ On | |
2 | xpsneng 8314 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 1o ∈ On) → (𝐴 × {1o}) ≈ 𝐴) | |
3 | 1, 2 | mpan2 682 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 × {1o}) ≈ 𝐴) |
4 | 0ex 5014 | . . . . 5 ⊢ ∅ ∈ V | |
5 | xpsneng 8314 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ ∅ ∈ V) → (𝐵 × {∅}) ≈ 𝐵) | |
6 | 4, 5 | mpan2 682 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 × {∅}) ≈ 𝐵) |
7 | ensym 8271 | . . . . 5 ⊢ ((𝐴 × {1o}) ≈ 𝐴 → 𝐴 ≈ (𝐴 × {1o})) | |
8 | ensym 8271 | . . . . 5 ⊢ ((𝐵 × {∅}) ≈ 𝐵 → 𝐵 ≈ (𝐵 × {∅})) | |
9 | incom 4032 | . . . . . . 7 ⊢ ((𝐴 × {1o}) ∩ (𝐵 × {∅})) = ((𝐵 × {∅}) ∩ (𝐴 × {1o})) | |
10 | xp01disj 7843 | . . . . . . 7 ⊢ ((𝐵 × {∅}) ∩ (𝐴 × {1o})) = ∅ | |
11 | 9, 10 | eqtri 2849 | . . . . . 6 ⊢ ((𝐴 × {1o}) ∩ (𝐵 × {∅})) = ∅ |
12 | cdaenun 9311 | . . . . . 6 ⊢ ((𝐴 ≈ (𝐴 × {1o}) ∧ 𝐵 ≈ (𝐵 × {∅}) ∧ ((𝐴 × {1o}) ∩ (𝐵 × {∅})) = ∅) → (𝐴 +𝑐 𝐵) ≈ ((𝐴 × {1o}) ∪ (𝐵 × {∅}))) | |
13 | 11, 12 | mp3an3 1578 | . . . . 5 ⊢ ((𝐴 ≈ (𝐴 × {1o}) ∧ 𝐵 ≈ (𝐵 × {∅})) → (𝐴 +𝑐 𝐵) ≈ ((𝐴 × {1o}) ∪ (𝐵 × {∅}))) |
14 | 7, 8, 13 | syl2an 589 | . . . 4 ⊢ (((𝐴 × {1o}) ≈ 𝐴 ∧ (𝐵 × {∅}) ≈ 𝐵) → (𝐴 +𝑐 𝐵) ≈ ((𝐴 × {1o}) ∪ (𝐵 × {∅}))) |
15 | 3, 6, 14 | syl2an 589 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 +𝑐 𝐵) ≈ ((𝐴 × {1o}) ∪ (𝐵 × {∅}))) |
16 | cdaval 9307 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵 +𝑐 𝐴) = ((𝐵 × {∅}) ∪ (𝐴 × {1o}))) | |
17 | 16 | ancoms 452 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵 +𝑐 𝐴) = ((𝐵 × {∅}) ∪ (𝐴 × {1o}))) |
18 | uncom 3984 | . . . 4 ⊢ ((𝐵 × {∅}) ∪ (𝐴 × {1o})) = ((𝐴 × {1o}) ∪ (𝐵 × {∅})) | |
19 | 17, 18 | syl6eq 2877 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵 +𝑐 𝐴) = ((𝐴 × {1o}) ∪ (𝐵 × {∅}))) |
20 | 15, 19 | breqtrrd 4901 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 +𝑐 𝐵) ≈ (𝐵 +𝑐 𝐴)) |
21 | 4 | enref 8255 | . . . 4 ⊢ ∅ ≈ ∅ |
22 | 21 | a1i 11 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ∅ ≈ ∅) |
23 | cdafn 9306 | . . . . 5 ⊢ +𝑐 Fn (V × V) | |
24 | fndm 6223 | . . . . 5 ⊢ ( +𝑐 Fn (V × V) → dom +𝑐 = (V × V)) | |
25 | 23, 24 | ax-mp 5 | . . . 4 ⊢ dom +𝑐 = (V × V) |
26 | 25 | ndmov 7078 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 +𝑐 𝐵) = ∅) |
27 | ancom 454 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐵 ∈ V ∧ 𝐴 ∈ V)) | |
28 | 25 | ndmov 7078 | . . . 4 ⊢ (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵 +𝑐 𝐴) = ∅) |
29 | 27, 28 | sylnbi 322 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵 +𝑐 𝐴) = ∅) |
30 | 22, 26, 29 | 3brtr4d 4905 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 +𝑐 𝐵) ≈ (𝐵 +𝑐 𝐴)) |
31 | 20, 30 | pm2.61i 177 | 1 ⊢ (𝐴 +𝑐 𝐵) ≈ (𝐵 +𝑐 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 386 = wceq 1656 ∈ wcel 2164 Vcvv 3414 ∪ cun 3796 ∩ cin 3797 ∅c0 4144 {csn 4397 class class class wbr 4873 × cxp 5340 dom cdm 5342 Oncon0 5963 Fn wfn 6118 (class class class)co 6905 1oc1o 7819 ≈ cen 8219 +𝑐 ccda 9304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-ord 5966 df-on 5967 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-1st 7428 df-2nd 7429 df-1o 7826 df-er 8009 df-en 8223 df-cda 9305 |
This theorem is referenced by: cdadom2 9324 cdalepw 9333 infcda 9345 alephadd 9714 gchdomtri 9766 pwxpndom 9803 gchpwdom 9807 gchhar 9816 |
Copyright terms: Public domain | W3C validator |