![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cdaenun | Structured version Visualization version GIF version |
Description: Cardinal addition is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
cdaenun | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 +𝑐 𝐶) ≈ (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdaen 9283 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 +𝑐 𝐶) ≈ (𝐵 +𝑐 𝐷)) | |
2 | 1 | 3adant3 1163 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 +𝑐 𝐶) ≈ (𝐵 +𝑐 𝐷)) |
3 | relen 8200 | . . . 4 ⊢ Rel ≈ | |
4 | 3 | brrelex2i 5364 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
5 | 3 | brrelex2i 5364 | . . 3 ⊢ (𝐶 ≈ 𝐷 → 𝐷 ∈ V) |
6 | id 22 | . . 3 ⊢ ((𝐵 ∩ 𝐷) = ∅ → (𝐵 ∩ 𝐷) = ∅) | |
7 | cdaun 9282 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐷 ∈ V ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐵 +𝑐 𝐷) ≈ (𝐵 ∪ 𝐷)) | |
8 | 4, 5, 6, 7 | syl3an 1200 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐵 +𝑐 𝐷) ≈ (𝐵 ∪ 𝐷)) |
9 | entr 8247 | . 2 ⊢ (((𝐴 +𝑐 𝐶) ≈ (𝐵 +𝑐 𝐷) ∧ (𝐵 +𝑐 𝐷) ≈ (𝐵 ∪ 𝐷)) → (𝐴 +𝑐 𝐶) ≈ (𝐵 ∪ 𝐷)) | |
10 | 2, 8, 9 | syl2anc 580 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 +𝑐 𝐶) ≈ (𝐵 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ∪ cun 3767 ∩ cin 3768 ∅c0 4115 class class class wbr 4843 (class class class)co 6878 ≈ cen 8192 +𝑐 ccda 9277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-ord 5944 df-on 5945 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-1o 7799 df-er 7982 df-en 8196 df-cda 9278 |
This theorem is referenced by: cda1en 9285 cdacomen 9291 cdaassen 9292 xpcdaen 9293 onacda 9307 pwxpndom2 9775 |
Copyright terms: Public domain | W3C validator |