![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cdafi | Structured version Visualization version GIF version |
Description: The cardinal sum of two finite sets is finite. (Contributed by NM, 22-Oct-2004.) |
Ref | Expression |
---|---|
cdafi | ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 +𝑐 𝐵) ≺ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 8228 | . . . 4 ⊢ Rel ≺ | |
2 | 1 | brrelex1i 5392 | . . 3 ⊢ (𝐴 ≺ ω → 𝐴 ∈ V) |
3 | 1 | brrelex1i 5392 | . . 3 ⊢ (𝐵 ≺ ω → 𝐵 ∈ V) |
4 | cdaval 9306 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1o}))) | |
5 | 2, 3, 4 | syl2an 591 | . 2 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1o}))) |
6 | 0elon 6015 | . . . . . 6 ⊢ ∅ ∈ On | |
7 | xpsneng 8313 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ∅ ∈ On) → (𝐴 × {∅}) ≈ 𝐴) | |
8 | 2, 6, 7 | sylancl 582 | . . . . 5 ⊢ (𝐴 ≺ ω → (𝐴 × {∅}) ≈ 𝐴) |
9 | sdomen1 8372 | . . . . 5 ⊢ ((𝐴 × {∅}) ≈ 𝐴 → ((𝐴 × {∅}) ≺ ω ↔ 𝐴 ≺ ω)) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝐴 ≺ ω → ((𝐴 × {∅}) ≺ ω ↔ 𝐴 ≺ ω)) |
11 | 10 | ibir 260 | . . 3 ⊢ (𝐴 ≺ ω → (𝐴 × {∅}) ≺ ω) |
12 | 1on 7832 | . . . . . 6 ⊢ 1o ∈ On | |
13 | xpsneng 8313 | . . . . . 6 ⊢ ((𝐵 ∈ V ∧ 1o ∈ On) → (𝐵 × {1o}) ≈ 𝐵) | |
14 | 3, 12, 13 | sylancl 582 | . . . . 5 ⊢ (𝐵 ≺ ω → (𝐵 × {1o}) ≈ 𝐵) |
15 | sdomen1 8372 | . . . . 5 ⊢ ((𝐵 × {1o}) ≈ 𝐵 → ((𝐵 × {1o}) ≺ ω ↔ 𝐵 ≺ ω)) | |
16 | 14, 15 | syl 17 | . . . 4 ⊢ (𝐵 ≺ ω → ((𝐵 × {1o}) ≺ ω ↔ 𝐵 ≺ ω)) |
17 | 16 | ibir 260 | . . 3 ⊢ (𝐵 ≺ ω → (𝐵 × {1o}) ≺ ω) |
18 | unfi2 8497 | . . 3 ⊢ (((𝐴 × {∅}) ≺ ω ∧ (𝐵 × {1o}) ≺ ω) → ((𝐴 × {∅}) ∪ (𝐵 × {1o})) ≺ ω) | |
19 | 11, 17, 18 | syl2an 591 | . 2 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → ((𝐴 × {∅}) ∪ (𝐵 × {1o})) ≺ ω) |
20 | 5, 19 | eqbrtrd 4894 | 1 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 +𝑐 𝐵) ≺ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∈ wcel 2166 Vcvv 3413 ∪ cun 3795 ∅c0 4143 {csn 4396 class class class wbr 4872 × cxp 5339 Oncon0 5962 (class class class)co 6904 ωcom 7325 1oc1o 7818 ≈ cen 8218 ≺ csdm 8220 +𝑐 ccda 9303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-reu 3123 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-int 4697 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-1o 7825 df-oadd 7829 df-er 8008 df-en 8222 df-dom 8223 df-sdom 8224 df-fin 8225 df-cda 9304 |
This theorem is referenced by: canthp1lem2 9789 |
Copyright terms: Public domain | W3C validator |