MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdalepw Structured version   Visualization version   GIF version

Theorem cdalepw 9224
Description: If 𝐴 is idempotent under cardinal sum and 𝐵 is dominated by the power set of 𝐴, then so is the cardinal sum of 𝐴 and 𝐵. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
cdalepw (((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴 +𝑐 𝐵) ≼ 𝒫 𝐴)

Proof of Theorem cdalepw
StepHypRef Expression
1 oveq1 6803 . . 3 (𝐴 = ∅ → (𝐴 +𝑐 𝐵) = (∅ +𝑐 𝐵))
21breq1d 4797 . 2 (𝐴 = ∅ → ((𝐴 +𝑐 𝐵) ≼ 𝒫 𝐴 ↔ (∅ +𝑐 𝐵) ≼ 𝒫 𝐴))
3 relen 8118 . . . . . . . . 9 Rel ≈
43brrelex2i 5298 . . . . . . . 8 ((𝐴 +𝑐 𝐴) ≈ 𝐴𝐴 ∈ V)
54adantr 466 . . . . . . 7 (((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ∈ V)
6 canth2g 8274 . . . . . . 7 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
7 sdomdom 8141 . . . . . . 7 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
85, 6, 73syl 18 . . . . . 6 (((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ≼ 𝒫 𝐴)
9 simpr 471 . . . . . 6 (((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ 𝒫 𝐴)
10 cdadom1 9214 . . . . . . 7 (𝐴 ≼ 𝒫 𝐴 → (𝐴 +𝑐 𝐵) ≼ (𝒫 𝐴 +𝑐 𝐵))
11 cdadom2 9215 . . . . . . 7 (𝐵 ≼ 𝒫 𝐴 → (𝒫 𝐴 +𝑐 𝐵) ≼ (𝒫 𝐴 +𝑐 𝒫 𝐴))
12 domtr 8166 . . . . . . 7 (((𝐴 +𝑐 𝐵) ≼ (𝒫 𝐴 +𝑐 𝐵) ∧ (𝒫 𝐴 +𝑐 𝐵) ≼ (𝒫 𝐴 +𝑐 𝒫 𝐴)) → (𝐴 +𝑐 𝐵) ≼ (𝒫 𝐴 +𝑐 𝒫 𝐴))
1310, 11, 12syl2an 583 . . . . . 6 ((𝐴 ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴 +𝑐 𝐵) ≼ (𝒫 𝐴 +𝑐 𝒫 𝐴))
148, 9, 13syl2anc 573 . . . . 5 (((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴 +𝑐 𝐵) ≼ (𝒫 𝐴 +𝑐 𝒫 𝐴))
15 pwcda1 9222 . . . . . 6 (𝐴 ∈ V → (𝒫 𝐴 +𝑐 𝒫 𝐴) ≈ 𝒫 (𝐴 +𝑐 1𝑜))
165, 15syl 17 . . . . 5 (((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝒫 𝐴 +𝑐 𝒫 𝐴) ≈ 𝒫 (𝐴 +𝑐 1𝑜))
17 domentr 8172 . . . . 5 (((𝐴 +𝑐 𝐵) ≼ (𝒫 𝐴 +𝑐 𝒫 𝐴) ∧ (𝒫 𝐴 +𝑐 𝒫 𝐴) ≈ 𝒫 (𝐴 +𝑐 1𝑜)) → (𝐴 +𝑐 𝐵) ≼ 𝒫 (𝐴 +𝑐 1𝑜))
1814, 16, 17syl2anc 573 . . . 4 (((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴 +𝑐 𝐵) ≼ 𝒫 (𝐴 +𝑐 1𝑜))
1918adantr 466 . . 3 ((((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴 +𝑐 𝐵) ≼ 𝒫 (𝐴 +𝑐 1𝑜))
20 0sdomg 8249 . . . . . . . . 9 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
215, 20syl 17 . . . . . . . 8 (((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (∅ ≺ 𝐴𝐴 ≠ ∅))
2221biimpar 463 . . . . . . 7 ((((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → ∅ ≺ 𝐴)
23 0sdom1dom 8318 . . . . . . 7 (∅ ≺ 𝐴 ↔ 1𝑜𝐴)
2422, 23sylib 208 . . . . . 6 ((((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → 1𝑜𝐴)
25 cdadom2 9215 . . . . . 6 (1𝑜𝐴 → (𝐴 +𝑐 1𝑜) ≼ (𝐴 +𝑐 𝐴))
2624, 25syl 17 . . . . 5 ((((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴 +𝑐 1𝑜) ≼ (𝐴 +𝑐 𝐴))
27 simpll 750 . . . . 5 ((((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴 +𝑐 𝐴) ≈ 𝐴)
28 domentr 8172 . . . . 5 (((𝐴 +𝑐 1𝑜) ≼ (𝐴 +𝑐 𝐴) ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴) → (𝐴 +𝑐 1𝑜) ≼ 𝐴)
2926, 27, 28syl2anc 573 . . . 4 ((((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴 +𝑐 1𝑜) ≼ 𝐴)
30 pwdom 8272 . . . 4 ((𝐴 +𝑐 1𝑜) ≼ 𝐴 → 𝒫 (𝐴 +𝑐 1𝑜) ≼ 𝒫 𝐴)
3129, 30syl 17 . . 3 ((((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → 𝒫 (𝐴 +𝑐 1𝑜) ≼ 𝒫 𝐴)
32 domtr 8166 . . 3 (((𝐴 +𝑐 𝐵) ≼ 𝒫 (𝐴 +𝑐 1𝑜) ∧ 𝒫 (𝐴 +𝑐 1𝑜) ≼ 𝒫 𝐴) → (𝐴 +𝑐 𝐵) ≼ 𝒫 𝐴)
3319, 31, 32syl2anc 573 . 2 ((((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴 +𝑐 𝐵) ≼ 𝒫 𝐴)
34 cdacomen 9209 . . 3 (∅ +𝑐 𝐵) ≈ (𝐵 +𝑐 ∅)
35 reldom 8119 . . . . . . 7 Rel ≼
3635brrelexi 5297 . . . . . 6 (𝐵 ≼ 𝒫 𝐴𝐵 ∈ V)
3736adantl 467 . . . . 5 (((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ∈ V)
38 cda0en 9207 . . . . 5 (𝐵 ∈ V → (𝐵 +𝑐 ∅) ≈ 𝐵)
39 domen1 8262 . . . . 5 ((𝐵 +𝑐 ∅) ≈ 𝐵 → ((𝐵 +𝑐 ∅) ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴))
4037, 38, 393syl 18 . . . 4 (((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → ((𝐵 +𝑐 ∅) ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴))
419, 40mpbird 247 . . 3 (((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐵 +𝑐 ∅) ≼ 𝒫 𝐴)
42 endomtr 8171 . . 3 (((∅ +𝑐 𝐵) ≈ (𝐵 +𝑐 ∅) ∧ (𝐵 +𝑐 ∅) ≼ 𝒫 𝐴) → (∅ +𝑐 𝐵) ≼ 𝒫 𝐴)
4334, 41, 42sylancr 575 . 2 (((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (∅ +𝑐 𝐵) ≼ 𝒫 𝐴)
442, 33, 43pm2.61ne 3028 1 (((𝐴 +𝑐 𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴 +𝑐 𝐵) ≼ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  Vcvv 3351  c0 4063  𝒫 cpw 4298   class class class wbr 4787  (class class class)co 6796  1𝑜c1o 7710  cen 8110  cdom 8111  csdm 8112   +𝑐 ccda 9195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-1o 7717  df-2o 7718  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-cda 9196
This theorem is referenced by:  gchdomtri  9657
  Copyright terms: Public domain W3C validator