![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cdaxpdom | Structured version Visualization version GIF version |
Description: Cartesian product dominates disjoint union for sets with cardinality greater than 1. Similar to Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
cdaxpdom | ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 +𝑐 𝐵) ≼ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 8235 | . . . . 5 ⊢ Rel ≺ | |
2 | 1 | brrelex2i 5398 | . . . 4 ⊢ (1o ≺ 𝐴 → 𝐴 ∈ V) |
3 | 1 | brrelex2i 5398 | . . . 4 ⊢ (1o ≺ 𝐵 → 𝐵 ∈ V) |
4 | cdaval 9314 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1o}))) | |
5 | 2, 3, 4 | syl2an 589 | . . 3 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1o}))) |
6 | 0ex 5016 | . . . . . . 7 ⊢ ∅ ∈ V | |
7 | xpsneng 8320 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴) | |
8 | 2, 6, 7 | sylancl 580 | . . . . . 6 ⊢ (1o ≺ 𝐴 → (𝐴 × {∅}) ≈ 𝐴) |
9 | sdomen2 8380 | . . . . . 6 ⊢ ((𝐴 × {∅}) ≈ 𝐴 → (1o ≺ (𝐴 × {∅}) ↔ 1o ≺ 𝐴)) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (1o ≺ 𝐴 → (1o ≺ (𝐴 × {∅}) ↔ 1o ≺ 𝐴)) |
11 | 10 | ibir 260 | . . . 4 ⊢ (1o ≺ 𝐴 → 1o ≺ (𝐴 × {∅})) |
12 | 1on 7838 | . . . . . . 7 ⊢ 1o ∈ On | |
13 | xpsneng 8320 | . . . . . . 7 ⊢ ((𝐵 ∈ V ∧ 1o ∈ On) → (𝐵 × {1o}) ≈ 𝐵) | |
14 | 3, 12, 13 | sylancl 580 | . . . . . 6 ⊢ (1o ≺ 𝐵 → (𝐵 × {1o}) ≈ 𝐵) |
15 | sdomen2 8380 | . . . . . 6 ⊢ ((𝐵 × {1o}) ≈ 𝐵 → (1o ≺ (𝐵 × {1o}) ↔ 1o ≺ 𝐵)) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ (1o ≺ 𝐵 → (1o ≺ (𝐵 × {1o}) ↔ 1o ≺ 𝐵)) |
17 | 16 | ibir 260 | . . . 4 ⊢ (1o ≺ 𝐵 → 1o ≺ (𝐵 × {1o})) |
18 | unxpdom 8442 | . . . 4 ⊢ ((1o ≺ (𝐴 × {∅}) ∧ 1o ≺ (𝐵 × {1o})) → ((𝐴 × {∅}) ∪ (𝐵 × {1o})) ≼ ((𝐴 × {∅}) × (𝐵 × {1o}))) | |
19 | 11, 17, 18 | syl2an 589 | . . 3 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → ((𝐴 × {∅}) ∪ (𝐵 × {1o})) ≼ ((𝐴 × {∅}) × (𝐵 × {1o}))) |
20 | 5, 19 | eqbrtrd 4897 | . 2 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 +𝑐 𝐵) ≼ ((𝐴 × {∅}) × (𝐵 × {1o}))) |
21 | xpen 8398 | . . 3 ⊢ (((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) → ((𝐴 × {∅}) × (𝐵 × {1o})) ≈ (𝐴 × 𝐵)) | |
22 | 8, 14, 21 | syl2an 589 | . 2 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → ((𝐴 × {∅}) × (𝐵 × {1o})) ≈ (𝐴 × 𝐵)) |
23 | domentr 8287 | . 2 ⊢ (((𝐴 +𝑐 𝐵) ≼ ((𝐴 × {∅}) × (𝐵 × {1o})) ∧ ((𝐴 × {∅}) × (𝐵 × {1o})) ≈ (𝐴 × 𝐵)) → (𝐴 +𝑐 𝐵) ≼ (𝐴 × 𝐵)) | |
24 | 20, 22, 23 | syl2anc 579 | 1 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 +𝑐 𝐵) ≼ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 Vcvv 3414 ∪ cun 3796 ∅c0 4146 {csn 4399 class class class wbr 4875 × cxp 5344 Oncon0 5967 (class class class)co 6910 1oc1o 7824 ≈ cen 8225 ≼ cdom 8226 ≺ csdm 8227 +𝑐 ccda 9311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-1o 7831 df-2o 7832 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-cda 9312 |
This theorem is referenced by: canthp1lem1 9796 |
Copyright terms: Public domain | W3C validator |