Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clelsb3f | Structured version Visualization version GIF version |
Description: Substitution applied to an atomic wff (class version of elsb3 2119). Usage of this theorem is discouraged because it depends on ax-13 2379. See clelsb3fw 2923 not requiring ax-13 2379, but extra disjoint variables. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised by Thierry Arnoux, 13-Mar-2017.) (Proof shortened by Wolf Lammen, 7-May-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
clelsb3f.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
clelsb3f | ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clelsb3f.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfcri 2906 | . . 3 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐴 |
3 | 2 | sbco2 2530 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑦 / 𝑤]𝑤 ∈ 𝐴) |
4 | clelsb3 2879 | . . 3 ⊢ ([𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) | |
5 | 4 | sbbii 2081 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ∈ 𝐴) |
6 | clelsb3 2879 | . 2 ⊢ ([𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
7 | 3, 5, 6 | 3bitr3i 304 | 1 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 [wsb 2069 ∈ wcel 2111 Ⅎwnfc 2899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-10 2142 ax-11 2158 ax-12 2175 ax-13 2379 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clel 2830 df-nfc 2901 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |