![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clelsb3fOLD | Structured version Visualization version GIF version |
Description: Obsolete version of clelsb3f 2936 as of 7-May-2023. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised by Thierry Arnoux, 13-Mar-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
clelsb3f.1 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
clelsb3fOLD | ⊢ ([𝑥 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clelsb3f.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
2 | 1 | nfcri 2926 | . . 3 ⊢ Ⅎ𝑦 𝑤 ∈ 𝐴 |
3 | 2 | sbco2 2477 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑥 / 𝑤]𝑤 ∈ 𝐴) |
4 | nfv 1873 | . . . 4 ⊢ Ⅎ𝑤 𝑦 ∈ 𝐴 | |
5 | eleq1w 2848 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
6 | 4, 5 | sbie 2468 | . . 3 ⊢ ([𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
7 | 6 | sbbii 2027 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑥 / 𝑦]𝑦 ∈ 𝐴) |
8 | nfv 1873 | . . 3 ⊢ Ⅎ𝑤 𝑥 ∈ 𝐴 | |
9 | eleq1w 2848 | . . 3 ⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
10 | 8, 9 | sbie 2468 | . 2 ⊢ ([𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
11 | 3, 7, 10 | 3bitr3i 293 | 1 ⊢ ([𝑥 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 [wsb 2015 ∈ wcel 2050 Ⅎwnfc 2916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clel 2846 df-nfc 2918 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |