Proof of Theorem clwlkclwwlk2OLD
Step | Hyp | Ref
| Expression |
1 | | lswccats1fst 13694 |
. . . 4
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (lastS‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)) |
2 | 1 | 3adant1 1166 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (lastS‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)) |
3 | 2 | biantrurd 530 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (((𝑃 ++ 〈“(𝑃‘0)”〉) substr 〈0,
((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)〉)
∈ (ClWWalks‘𝐺)
↔ ((lastS‘(𝑃 ++
〈“(𝑃‘0)”〉)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)
∧ ((𝑃 ++
〈“(𝑃‘0)”〉) substr 〈0,
((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)〉)
∈ (ClWWalks‘𝐺)))) |
4 | | wrdlenccats1lenm1 13681 |
. . . . . . . 8
⊢ (𝑃 ∈ Word 𝑉 → ((♯‘(𝑃 ++ 〈“(𝑃‘0)”〉)) − 1) =
(♯‘𝑃)) |
5 | 4 | adantr 474 |
. . . . . . 7
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → ((♯‘(𝑃 ++ 〈“(𝑃‘0)”〉)) −
1) = (♯‘𝑃)) |
6 | 5 | opeq2d 4629 |
. . . . . 6
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 〈0,
((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)〉 =
〈0, (♯‘𝑃)〉) |
7 | 6 | oveq2d 6920 |
. . . . 5
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → ((𝑃 ++ 〈“(𝑃‘0)”〉) substr 〈0,
((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)〉) =
((𝑃 ++ 〈“(𝑃‘0)”〉) substr
〈0, (♯‘𝑃)〉)) |
8 | | simpl 476 |
. . . . . 6
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝑃 ∈ Word 𝑉) |
9 | | wrdsymb1 13612 |
. . . . . . 7
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃‘0) ∈ 𝑉) |
10 | 9 | s1cld 13662 |
. . . . . 6
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 〈“(𝑃‘0)”〉 ∈
Word 𝑉) |
11 | | eqidd 2825 |
. . . . . 6
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝑃) = (♯‘𝑃)) |
12 | | swrdccatidOLD 13844 |
. . . . . 6
⊢ ((𝑃 ∈ Word 𝑉 ∧ 〈“(𝑃‘0)”〉 ∈ Word 𝑉 ∧ (♯‘𝑃) = (♯‘𝑃)) → ((𝑃 ++ 〈“(𝑃‘0)”〉) substr 〈0,
(♯‘𝑃)〉) =
𝑃) |
13 | 8, 10, 11, 12 | syl3anc 1496 |
. . . . 5
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → ((𝑃 ++ 〈“(𝑃‘0)”〉) substr 〈0,
(♯‘𝑃)〉) =
𝑃) |
14 | 7, 13 | eqtr2d 2861 |
. . . 4
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝑃 = ((𝑃 ++ 〈“(𝑃‘0)”〉) substr 〈0,
((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) −
1)〉)) |
15 | 14 | 3adant1 1166 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝑃 = ((𝑃 ++ 〈“(𝑃‘0)”〉) substr 〈0,
((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) −
1)〉)) |
16 | 15 | eleq1d 2890 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃 ∈ (ClWWalks‘𝐺) ↔ ((𝑃 ++ 〈“(𝑃‘0)”〉) substr 〈0,
((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)〉)
∈ (ClWWalks‘𝐺))) |
17 | | simp1 1172 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝐺 ∈ USPGraph) |
18 | | simp2 1173 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝑃 ∈ Word 𝑉) |
19 | 10 | 3adant1 1166 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 〈“(𝑃‘0)”〉 ∈
Word 𝑉) |
20 | | ccatcl 13633 |
. . . 4
⊢ ((𝑃 ∈ Word 𝑉 ∧ 〈“(𝑃‘0)”〉 ∈ Word 𝑉) → (𝑃 ++ 〈“(𝑃‘0)”〉) ∈ Word 𝑉) |
21 | 18, 19, 20 | syl2anc 581 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃 ++ 〈“(𝑃‘0)”〉) ∈ Word 𝑉) |
22 | | lencl 13592 |
. . . . . . . 8
⊢ (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈
ℕ0) |
23 | | 1e2m1 11484 |
. . . . . . . . . . 11
⊢ 1 = (2
− 1) |
24 | 23 | a1i 11 |
. . . . . . . . . 10
⊢
((♯‘𝑃)
∈ ℕ0 → 1 = (2 − 1)) |
25 | 24 | breq1d 4882 |
. . . . . . . . 9
⊢
((♯‘𝑃)
∈ ℕ0 → (1 ≤ (♯‘𝑃) ↔ (2 − 1) ≤
(♯‘𝑃))) |
26 | | 2re 11424 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
27 | 26 | a1i 11 |
. . . . . . . . . 10
⊢
((♯‘𝑃)
∈ ℕ0 → 2 ∈ ℝ) |
28 | | 1red 10356 |
. . . . . . . . . 10
⊢
((♯‘𝑃)
∈ ℕ0 → 1 ∈ ℝ) |
29 | | nn0re 11627 |
. . . . . . . . . 10
⊢
((♯‘𝑃)
∈ ℕ0 → (♯‘𝑃) ∈ ℝ) |
30 | 27, 28, 29 | lesubaddd 10948 |
. . . . . . . . 9
⊢
((♯‘𝑃)
∈ ℕ0 → ((2 − 1) ≤ (♯‘𝑃) ↔ 2 ≤
((♯‘𝑃) +
1))) |
31 | 25, 30 | bitrd 271 |
. . . . . . . 8
⊢
((♯‘𝑃)
∈ ℕ0 → (1 ≤ (♯‘𝑃) ↔ 2 ≤ ((♯‘𝑃) + 1))) |
32 | 22, 31 | syl 17 |
. . . . . . 7
⊢ (𝑃 ∈ Word 𝑉 → (1 ≤ (♯‘𝑃) ↔ 2 ≤
((♯‘𝑃) +
1))) |
33 | 32 | biimpa 470 |
. . . . . 6
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤
((♯‘𝑃) +
1)) |
34 | | s1len 13665 |
. . . . . . 7
⊢
(♯‘〈“(𝑃‘0)”〉) = 1 |
35 | 34 | oveq2i 6915 |
. . . . . 6
⊢
((♯‘𝑃) +
(♯‘〈“(𝑃‘0)”〉)) =
((♯‘𝑃) +
1) |
36 | 33, 35 | syl6breqr 4914 |
. . . . 5
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤
((♯‘𝑃) +
(♯‘〈“(𝑃‘0)”〉))) |
37 | 36 | 3adant1 1166 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤
((♯‘𝑃) +
(♯‘〈“(𝑃‘0)”〉))) |
38 | 8, 10 | jca 509 |
. . . . . 6
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃 ∈ Word 𝑉 ∧ 〈“(𝑃‘0)”〉 ∈ Word 𝑉)) |
39 | 38 | 3adant1 1166 |
. . . . 5
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃 ∈ Word 𝑉 ∧ 〈“(𝑃‘0)”〉 ∈ Word 𝑉)) |
40 | | ccatlen 13634 |
. . . . 5
⊢ ((𝑃 ∈ Word 𝑉 ∧ 〈“(𝑃‘0)”〉 ∈ Word 𝑉) → (♯‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
((♯‘𝑃) +
(♯‘〈“(𝑃‘0)”〉))) |
41 | 39, 40 | syl 17 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
((♯‘𝑃) +
(♯‘〈“(𝑃‘0)”〉))) |
42 | 37, 41 | breqtrrd 4900 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤
(♯‘(𝑃 ++
〈“(𝑃‘0)”〉))) |
43 | | clwlkclwwlk.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
44 | | clwlkclwwlk.e |
. . . 4
⊢ 𝐸 = (iEdg‘𝐺) |
45 | 43, 44 | clwlkclwwlkOLD 27331 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ (𝑃 ++ 〈“(𝑃‘0)”〉) ∈
Word 𝑉 ∧ 2 ≤
(♯‘(𝑃 ++
〈“(𝑃‘0)”〉))) →
(∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ 〈“(𝑃‘0)”〉) ↔
((lastS‘(𝑃 ++
〈“(𝑃‘0)”〉)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)
∧ ((𝑃 ++
〈“(𝑃‘0)”〉) substr 〈0,
((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)〉)
∈ (ClWWalks‘𝐺)))) |
46 | 17, 21, 42, 45 | syl3anc 1496 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ 〈“(𝑃‘0)”〉) ↔
((lastS‘(𝑃 ++
〈“(𝑃‘0)”〉)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)
∧ ((𝑃 ++
〈“(𝑃‘0)”〉) substr 〈0,
((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)〉)
∈ (ClWWalks‘𝐺)))) |
47 | 3, 16, 46 | 3bitr4rd 304 |
1
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ 〈“(𝑃‘0)”〉) ↔ 𝑃 ∈ (ClWWalks‘𝐺))) |