Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkf1lem2OLD Structured version   Visualization version   GIF version

Theorem clwlkclwwlkf1lem2OLD 27337
 Description: Obsolete version of clwlkclwwlkf1lem2 27336 as of 12-Oct-2022. (Contributed by AV, 24-May-2022.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
clwlkclwwlkf.a 𝐴 = (1st𝑈)
clwlkclwwlkf.b 𝐵 = (2nd𝑈)
clwlkclwwlkf.d 𝐷 = (1st𝑊)
clwlkclwwlkf.e 𝐸 = (2nd𝑊)
Assertion
Ref Expression
clwlkclwwlkf1lem2OLD ((𝑈𝐶𝑊𝐶 ∧ (𝐵 substr ⟨0, (♯‘𝐴)⟩) = (𝐸 substr ⟨0, (♯‘𝐷)⟩)) → ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖)))
Distinct variable groups:   𝑖,𝐺   𝑤,𝐺   𝑤,𝐴   𝑤,𝑈   𝐴,𝑖   𝐵,𝑖   𝐷,𝑖   𝑤,𝐷   𝑖,𝐸   𝑤,𝑊
Allowed substitution hints:   𝐵(𝑤)   𝐶(𝑤,𝑖)   𝑈(𝑖)   𝐸(𝑤)   𝑊(𝑖)

Proof of Theorem clwlkclwwlkf1lem2OLD
StepHypRef Expression
1 clwlkclwwlkf.c . . . . 5 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
2 clwlkclwwlkf.a . . . . 5 𝐴 = (1st𝑈)
3 clwlkclwwlkf.b . . . . 5 𝐵 = (2nd𝑈)
41, 2, 3clwlkclwwlkflem 27335 . . . 4 (𝑈𝐶 → (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ))
5 clwlkclwwlkf.d . . . . 5 𝐷 = (1st𝑊)
6 clwlkclwwlkf.e . . . . 5 𝐸 = (2nd𝑊)
71, 5, 6clwlkclwwlkflem 27335 . . . 4 (𝑊𝐶 → (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ))
84, 7anim12i 608 . . 3 ((𝑈𝐶𝑊𝐶) → ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)))
9 eqid 2825 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
109wlkpwrd 26915 . . . . . 6 (𝐴(Walks‘𝐺)𝐵𝐵 ∈ Word (Vtx‘𝐺))
11103ad2ant1 1169 . . . . 5 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → 𝐵 ∈ Word (Vtx‘𝐺))
129wlkpwrd 26915 . . . . . 6 (𝐷(Walks‘𝐺)𝐸𝐸 ∈ Word (Vtx‘𝐺))
13123ad2ant1 1169 . . . . 5 ((𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ) → 𝐸 ∈ Word (Vtx‘𝐺))
1411, 13anim12i 608 . . . 4 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐸 ∈ Word (Vtx‘𝐺)))
15 nnnn0 11626 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ∈ ℕ0)
16153ad2ant3 1171 . . . . 5 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → (♯‘𝐴) ∈ ℕ0)
17 nnnn0 11626 . . . . . 6 ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ∈ ℕ0)
18173ad2ant3 1171 . . . . 5 ((𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ) → (♯‘𝐷) ∈ ℕ0)
1916, 18anim12i 608 . . . 4 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → ((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐷) ∈ ℕ0))
20 wlklenvp1 26916 . . . . . . . 8 (𝐴(Walks‘𝐺)𝐵 → (♯‘𝐵) = ((♯‘𝐴) + 1))
21 nnre 11358 . . . . . . . . . 10 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ∈ ℝ)
2221lep1d 11285 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≤ ((♯‘𝐴) + 1))
23 breq2 4877 . . . . . . . . 9 ((♯‘𝐵) = ((♯‘𝐴) + 1) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ (♯‘𝐴) ≤ ((♯‘𝐴) + 1)))
2422, 23syl5ibr 238 . . . . . . . 8 ((♯‘𝐵) = ((♯‘𝐴) + 1) → ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≤ (♯‘𝐵)))
2520, 24syl 17 . . . . . . 7 (𝐴(Walks‘𝐺)𝐵 → ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≤ (♯‘𝐵)))
2625a1d 25 . . . . . 6 (𝐴(Walks‘𝐺)𝐵 → ((𝐵‘0) = (𝐵‘(♯‘𝐴)) → ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≤ (♯‘𝐵))))
27263imp 1143 . . . . 5 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → (♯‘𝐴) ≤ (♯‘𝐵))
28 wlklenvp1 26916 . . . . . . . 8 (𝐷(Walks‘𝐺)𝐸 → (♯‘𝐸) = ((♯‘𝐷) + 1))
29 nnre 11358 . . . . . . . . . 10 ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ∈ ℝ)
3029lep1d 11285 . . . . . . . . 9 ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ≤ ((♯‘𝐷) + 1))
31 breq2 4877 . . . . . . . . 9 ((♯‘𝐸) = ((♯‘𝐷) + 1) → ((♯‘𝐷) ≤ (♯‘𝐸) ↔ (♯‘𝐷) ≤ ((♯‘𝐷) + 1)))
3230, 31syl5ibr 238 . . . . . . . 8 ((♯‘𝐸) = ((♯‘𝐷) + 1) → ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ≤ (♯‘𝐸)))
3328, 32syl 17 . . . . . . 7 (𝐷(Walks‘𝐺)𝐸 → ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ≤ (♯‘𝐸)))
3433a1d 25 . . . . . 6 (𝐷(Walks‘𝐺)𝐸 → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((♯‘𝐷) ∈ ℕ → (♯‘𝐷) ≤ (♯‘𝐸))))
35343imp 1143 . . . . 5 ((𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ) → (♯‘𝐷) ≤ (♯‘𝐸))
3627, 35anim12i 608 . . . 4 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐷) ≤ (♯‘𝐸)))
3714, 19, 363jca 1164 . . 3 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐸 ∈ Word (Vtx‘𝐺)) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐷) ∈ ℕ0) ∧ ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐷) ≤ (♯‘𝐸))))
38 swrdeqOLD 13733 . . 3 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐸 ∈ Word (Vtx‘𝐺)) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐷) ∈ ℕ0) ∧ ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐷) ≤ (♯‘𝐸))) → ((𝐵 substr ⟨0, (♯‘𝐴)⟩) = (𝐸 substr ⟨0, (♯‘𝐷)⟩) ↔ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))))
398, 37, 383syl 18 . 2 ((𝑈𝐶𝑊𝐶) → ((𝐵 substr ⟨0, (♯‘𝐴)⟩) = (𝐸 substr ⟨0, (♯‘𝐷)⟩) ↔ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))))
4039biimp3a 1599 1 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 substr ⟨0, (♯‘𝐴)⟩) = (𝐸 substr ⟨0, (♯‘𝐷)⟩)) → ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1113   = wceq 1658   ∈ wcel 2166  ∀wral 3117  {crab 3121  ⟨cop 4403   class class class wbr 4873  ‘cfv 6123  (class class class)co 6905  1st c1st 7426  2nd c2nd 7427  0cc0 10252  1c1 10253   + caddc 10255   ≤ cle 10392  ℕcn 11350  ℕ0cn0 11618  ..^cfzo 12760  ♯chash 13410  Word cword 13574   substr csubstr 13700  Vtxcvtx 26294  Walkscwlks 26894  ClWalkscclwlks 27072 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-ifp 1092  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-hash 13411  df-word 13575  df-substr 13701  df-wlks 26897  df-clwlks 27073 This theorem is referenced by:  clwlkclwwlkf1lem3OLD  27339  clwlkclwwlkf1OLD  27343
 Copyright terms: Public domain W3C validator