Step | Hyp | Ref
| Expression |
1 | | clwlkclwwlkf.c |
. . 3
⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤
(♯‘(1st ‘𝑤))} |
2 | | clwlkclwwlkfOLD.f |
. . 3
⊢ 𝐹 = (𝑐 ∈ 𝐶 ↦ ((2nd ‘𝑐) substr 〈0,
((♯‘(2nd ‘𝑐)) − 1)〉)) |
3 | 1, 2 | clwlkclwwlkfOLD 27298 |
. 2
⊢ (𝐺 ∈ USPGraph → 𝐹:𝐶⟶(ClWWalks‘𝐺)) |
4 | | clwwlkgt0 27272 |
. . . . . 6
⊢ (𝑤 ∈ (ClWWalks‘𝐺) → 0 <
(♯‘𝑤)) |
5 | | eqid 2798 |
. . . . . . . 8
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
6 | 5 | clwwlkbp 27271 |
. . . . . . 7
⊢ (𝑤 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅)) |
7 | | lencl 13550 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ Word (Vtx‘𝐺) → (♯‘𝑤) ∈
ℕ0) |
8 | 7 | nn0zd 11767 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ Word (Vtx‘𝐺) → (♯‘𝑤) ∈
ℤ) |
9 | | zgt0ge1 11718 |
. . . . . . . . . . 11
⊢
((♯‘𝑤)
∈ ℤ → (0 < (♯‘𝑤) ↔ 1 ≤ (♯‘𝑤))) |
10 | 8, 9 | syl 17 |
. . . . . . . . . 10
⊢ (𝑤 ∈ Word (Vtx‘𝐺) → (0 <
(♯‘𝑤) ↔ 1
≤ (♯‘𝑤))) |
11 | 10 | biimpd 221 |
. . . . . . . . 9
⊢ (𝑤 ∈ Word (Vtx‘𝐺) → (0 <
(♯‘𝑤) → 1
≤ (♯‘𝑤))) |
12 | 11 | anc2li 552 |
. . . . . . . 8
⊢ (𝑤 ∈ Word (Vtx‘𝐺) → (0 <
(♯‘𝑤) →
(𝑤 ∈ Word
(Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)))) |
13 | 12 | 3ad2ant2 1165 |
. . . . . . 7
⊢ ((𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅) → (0 <
(♯‘𝑤) →
(𝑤 ∈ Word
(Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)))) |
14 | 6, 13 | syl 17 |
. . . . . 6
⊢ (𝑤 ∈ (ClWWalks‘𝐺) → (0 <
(♯‘𝑤) →
(𝑤 ∈ Word
(Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)))) |
15 | 4, 14 | mpd 15 |
. . . . 5
⊢ (𝑤 ∈ (ClWWalks‘𝐺) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) |
16 | 15 | adantl 474 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ (ClWWalks‘𝐺)) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) |
17 | | eqid 2798 |
. . . . . . . . 9
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
18 | 5, 17 | clwlkclwwlk2 27290 |
. . . . . . . 8
⊢ ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) →
(∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ 〈“(𝑤‘0)”〉) ↔ 𝑤 ∈ (ClWWalks‘𝐺))) |
19 | | df-br 4843 |
. . . . . . . . . 10
⊢ (𝑓(ClWalks‘𝐺)(𝑤 ++ 〈“(𝑤‘0)”〉) ↔ 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺)) |
20 | | simpr2 1251 |
. . . . . . . . . . . . . 14
⊢
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ (𝐺 ∈ USPGraph
∧ 𝑤 ∈ Word
(Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤))) →
𝑤 ∈ Word
(Vtx‘𝐺)) |
21 | | simpr3 1253 |
. . . . . . . . . . . . . 14
⊢
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ (𝐺 ∈ USPGraph
∧ 𝑤 ∈ Word
(Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤))) →
1 ≤ (♯‘𝑤)) |
22 | | simpl 475 |
. . . . . . . . . . . . . 14
⊢
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ (𝐺 ∈ USPGraph
∧ 𝑤 ∈ Word
(Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤))) →
〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)) |
23 | 1 | clwlkclwwlkfolem 27297 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤) ∧
〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺))
→ 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ 𝐶) |
24 | 20, 21, 22, 23 | syl3anc 1491 |
. . . . . . . . . . . . 13
⊢
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ (𝐺 ∈ USPGraph
∧ 𝑤 ∈ Word
(Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤))) →
〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ 𝐶) |
25 | 23 | 3expa 1148 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) ∧
〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺))
→ 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ 𝐶) |
26 | | ovex 6909 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ++ 〈“(𝑤‘0)”〉) substr
〈0, ((♯‘(𝑤
++ 〈“(𝑤‘0)”〉)) − 1)〉)
∈ V |
27 | | fveq2 6410 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 →
(2nd ‘𝑐) =
(2nd ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)) |
28 | | 2fveq3 6415 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 →
(♯‘(2nd ‘𝑐)) = (♯‘(2nd
‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉))) |
29 | 28 | oveq1d 6892 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 →
((♯‘(2nd ‘𝑐)) − 1) =
((♯‘(2nd ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)) −
1)) |
30 | 29 | opeq2d 4599 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 → 〈0,
((♯‘(2nd ‘𝑐)) − 1)〉 = 〈0,
((♯‘(2nd ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)) −
1)〉) |
31 | 27, 30 | oveq12d 6895 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 →
((2nd ‘𝑐)
substr 〈0, ((♯‘(2nd ‘𝑐)) − 1)〉) = ((2nd
‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)
substr 〈0, ((♯‘(2nd ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)) −
1)〉)) |
32 | | vex 3387 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑓 ∈ V |
33 | | ovex 6909 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 ++ 〈“(𝑤‘0)”〉) ∈
V |
34 | 32, 33 | op2nd 7409 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(2nd ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉) = (𝑤 ++ 〈“(𝑤‘0)”〉) |
35 | 34 | fveq2i 6413 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(♯‘(2nd ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)) =
(♯‘(𝑤 ++
〈“(𝑤‘0)”〉)) |
36 | 35 | oveq1i 6887 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((♯‘(2nd ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)) − 1) =
((♯‘(𝑤 ++
〈“(𝑤‘0)”〉)) −
1) |
37 | 36 | opeq2i 4596 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 〈0,
((♯‘(2nd ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)) −
1)〉 = 〈0, ((♯‘(𝑤 ++ 〈“(𝑤‘0)”〉)) −
1)〉 |
38 | 34, 37 | oveq12i 6889 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((2nd ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉) substr
〈0, ((♯‘(2nd ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)) −
1)〉) = ((𝑤 ++
〈“(𝑤‘0)”〉) substr 〈0,
((♯‘(𝑤 ++
〈“(𝑤‘0)”〉)) −
1)〉) |
39 | 31, 38 | syl6eq 2848 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 →
((2nd ‘𝑐)
substr 〈0, ((♯‘(2nd ‘𝑐)) − 1)〉) = ((𝑤 ++ 〈“(𝑤‘0)”〉) substr 〈0,
((♯‘(𝑤 ++
〈“(𝑤‘0)”〉)) −
1)〉)) |
40 | 39, 2 | fvmptg 6504 |
. . . . . . . . . . . . . . . . . . 19
⊢
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ 𝐶 ∧ ((𝑤 ++ 〈“(𝑤‘0)”〉) substr
〈0, ((♯‘(𝑤
++ 〈“(𝑤‘0)”〉)) − 1)〉)
∈ V) → (𝐹‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉) = ((𝑤 ++ 〈“(𝑤‘0)”〉) substr
〈0, ((♯‘(𝑤
++ 〈“(𝑤‘0)”〉)) −
1)〉)) |
41 | 25, 26, 40 | sylancl 581 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) ∧
〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺))
→ (𝐹‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉) = ((𝑤 ++ 〈“(𝑤‘0)”〉) substr
〈0, ((♯‘(𝑤
++ 〈“(𝑤‘0)”〉)) −
1)〉)) |
42 | | wrdlenccats1lenm1 13640 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ∈ Word (Vtx‘𝐺) → ((♯‘(𝑤 ++ 〈“(𝑤‘0)”〉)) −
1) = (♯‘𝑤)) |
43 | 42 | ad2antrr 718 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) ∧
〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺))
→ ((♯‘(𝑤
++ 〈“(𝑤‘0)”〉)) − 1) =
(♯‘𝑤)) |
44 | 43 | opeq2d 4599 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) ∧
〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺))
→ 〈0, ((♯‘(𝑤 ++ 〈“(𝑤‘0)”〉)) − 1)〉 =
〈0, (♯‘𝑤)〉) |
45 | 44 | oveq2d 6893 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) ∧
〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺))
→ ((𝑤 ++
〈“(𝑤‘0)”〉) substr 〈0,
((♯‘(𝑤 ++
〈“(𝑤‘0)”〉)) − 1)〉) =
((𝑤 ++ 〈“(𝑤‘0)”〉) substr
〈0, (♯‘𝑤)〉)) |
46 | | simpll 784 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) ∧
〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺))
→ 𝑤 ∈ Word
(Vtx‘𝐺)) |
47 | | simpl 475 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) ∧
〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺))
→ (𝑤 ∈ Word
(Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤))) |
48 | | wrdsymb1 13570 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) →
(𝑤‘0) ∈
(Vtx‘𝐺)) |
49 | 47, 48 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) ∧
〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺))
→ (𝑤‘0) ∈
(Vtx‘𝐺)) |
50 | 49 | s1cld 13620 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) ∧
〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺))
→ 〈“(𝑤‘0)”〉 ∈ Word
(Vtx‘𝐺)) |
51 | | eqidd 2799 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) ∧
〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺))
→ (♯‘𝑤) =
(♯‘𝑤)) |
52 | | swrdccatidOLD 13806 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 〈“(𝑤‘0)”〉 ∈
Word (Vtx‘𝐺) ∧
(♯‘𝑤) =
(♯‘𝑤)) →
((𝑤 ++ 〈“(𝑤‘0)”〉) substr
〈0, (♯‘𝑤)〉) = 𝑤) |
53 | 46, 50, 51, 52 | syl3anc 1491 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) ∧
〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺))
→ ((𝑤 ++
〈“(𝑤‘0)”〉) substr 〈0,
(♯‘𝑤)〉) =
𝑤) |
54 | 41, 45, 53 | 3eqtrrd 2837 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) ∧
〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺))
→ 𝑤 = (𝐹‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)) |
55 | 54 | ex 402 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) →
(〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
→ 𝑤 = (𝐹‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉))) |
56 | 55 | 3adant1 1161 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) →
(〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
→ 𝑤 = (𝐹‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉))) |
57 | 56 | ad2antlr 719 |
. . . . . . . . . . . . . 14
⊢
(((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ (𝐺 ∈ USPGraph
∧ 𝑤 ∈ Word
(Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤))) ∧
𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉) →
(〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
→ 𝑤 = (𝐹‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉))) |
58 | | fveq2 6410 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 → (𝐹‘𝑐) = (𝐹‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)) |
59 | 58 | eqeq2d 2808 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 → (𝑤 = (𝐹‘𝑐) ↔ 𝑤 = (𝐹‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉))) |
60 | 59 | imbi2d 332 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 →
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
→ 𝑤 = (𝐹‘𝑐)) ↔ (〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺) →
𝑤 = (𝐹‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)))) |
61 | 60 | adantl 474 |
. . . . . . . . . . . . . 14
⊢
(((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ (𝐺 ∈ USPGraph
∧ 𝑤 ∈ Word
(Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤))) ∧
𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉) →
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
→ 𝑤 = (𝐹‘𝑐)) ↔ (〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺) →
𝑤 = (𝐹‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)))) |
62 | 57, 61 | mpbird 249 |
. . . . . . . . . . . . 13
⊢
(((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ (𝐺 ∈ USPGraph
∧ 𝑤 ∈ Word
(Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤))) ∧
𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉) →
(〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
→ 𝑤 = (𝐹‘𝑐))) |
63 | 24, 62 | rspcimedv 3498 |
. . . . . . . . . . . 12
⊢
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ (𝐺 ∈ USPGraph
∧ 𝑤 ∈ Word
(Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤))) →
(〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
→ ∃𝑐 ∈
𝐶 𝑤 = (𝐹‘𝑐))) |
64 | 63 | ex 402 |
. . . . . . . . . . 11
⊢
(〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
→ ((𝐺 ∈ USPGraph
∧ 𝑤 ∈ Word
(Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) →
(〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
→ ∃𝑐 ∈
𝐶 𝑤 = (𝐹‘𝑐)))) |
65 | 64 | pm2.43b 55 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) →
(〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
→ ∃𝑐 ∈
𝐶 𝑤 = (𝐹‘𝑐))) |
66 | 19, 65 | syl5bi 234 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) →
(𝑓(ClWalks‘𝐺)(𝑤 ++ 〈“(𝑤‘0)”〉) → ∃𝑐 ∈ 𝐶 𝑤 = (𝐹‘𝑐))) |
67 | 66 | exlimdv 2029 |
. . . . . . . 8
⊢ ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) →
(∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ 〈“(𝑤‘0)”〉) → ∃𝑐 ∈ 𝐶 𝑤 = (𝐹‘𝑐))) |
68 | 18, 67 | sylbird 252 |
. . . . . . 7
⊢ ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) →
(𝑤 ∈
(ClWWalks‘𝐺) →
∃𝑐 ∈ 𝐶 𝑤 = (𝐹‘𝑐))) |
69 | 68 | 3expib 1153 |
. . . . . 6
⊢ (𝐺 ∈ USPGraph → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) →
(𝑤 ∈
(ClWWalks‘𝐺) →
∃𝑐 ∈ 𝐶 𝑤 = (𝐹‘𝑐)))) |
70 | 69 | com23 86 |
. . . . 5
⊢ (𝐺 ∈ USPGraph → (𝑤 ∈ (ClWWalks‘𝐺) → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → ∃𝑐 ∈ 𝐶 𝑤 = (𝐹‘𝑐)))) |
71 | 70 | imp 396 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ (ClWWalks‘𝐺)) → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → ∃𝑐 ∈ 𝐶 𝑤 = (𝐹‘𝑐))) |
72 | 16, 71 | mpd 15 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ (ClWWalks‘𝐺)) → ∃𝑐 ∈ 𝐶 𝑤 = (𝐹‘𝑐)) |
73 | 72 | ralrimiva 3146 |
. 2
⊢ (𝐺 ∈ USPGraph →
∀𝑤 ∈
(ClWWalks‘𝐺)∃𝑐 ∈ 𝐶 𝑤 = (𝐹‘𝑐)) |
74 | | dffo3 6599 |
. 2
⊢ (𝐹:𝐶–onto→(ClWWalks‘𝐺) ↔ (𝐹:𝐶⟶(ClWWalks‘𝐺) ∧ ∀𝑤 ∈ (ClWWalks‘𝐺)∃𝑐 ∈ 𝐶 𝑤 = (𝐹‘𝑐))) |
75 | 3, 73, 74 | sylanbrc 579 |
1
⊢ (𝐺 ∈ USPGraph → 𝐹:𝐶–onto→(ClWWalks‘𝐺)) |