Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlknf1oclwwlknlem1OLD Structured version   Visualization version   GIF version

Theorem clwlknf1oclwwlknlem1OLD 27449
 Description: Obsolete version of clwlknf1oclwwlknlem1 27448 as of 12-Oct-2022. (Contributed by AV, 26-May-2022.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
clwlknf1oclwwlknlem1OLD ((𝐶 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝐶))) → (♯‘((2nd𝐶) substr ⟨0, ((♯‘(2nd𝐶)) − 1)⟩)) = (♯‘(1st𝐶)))

Proof of Theorem clwlknf1oclwwlknlem1OLD
StepHypRef Expression
1 clwlkwlk 27078 . . 3 (𝐶 ∈ (ClWalks‘𝐺) → 𝐶 ∈ (Walks‘𝐺))
2 wlkcpr 26927 . . . 4 (𝐶 ∈ (Walks‘𝐺) ↔ (1st𝐶)(Walks‘𝐺)(2nd𝐶))
3 eqid 2826 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
43wlkpwrd 26916 . . . . . . 7 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → (2nd𝐶) ∈ Word (Vtx‘𝐺))
5 lencl 13594 . . . . . . . . 9 ((2nd𝐶) ∈ Word (Vtx‘𝐺) → (♯‘(2nd𝐶)) ∈ ℕ0)
64, 5syl 17 . . . . . . . 8 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → (♯‘(2nd𝐶)) ∈ ℕ0)
7 wlklenvm1 26920 . . . . . . . . . . 11 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → (♯‘(1st𝐶)) = ((♯‘(2nd𝐶)) − 1))
87breq2d 4886 . . . . . . . . . 10 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → (1 ≤ (♯‘(1st𝐶)) ↔ 1 ≤ ((♯‘(2nd𝐶)) − 1)))
9 1red 10358 . . . . . . . . . . . . 13 ((♯‘(2nd𝐶)) ∈ ℕ0 → 1 ∈ ℝ)
10 nn0re 11629 . . . . . . . . . . . . 13 ((♯‘(2nd𝐶)) ∈ ℕ0 → (♯‘(2nd𝐶)) ∈ ℝ)
119, 9, 10leaddsub2d 10955 . . . . . . . . . . . 12 ((♯‘(2nd𝐶)) ∈ ℕ0 → ((1 + 1) ≤ (♯‘(2nd𝐶)) ↔ 1 ≤ ((♯‘(2nd𝐶)) − 1)))
12 1p1e2 11484 . . . . . . . . . . . . . 14 (1 + 1) = 2
1312breq1i 4881 . . . . . . . . . . . . 13 ((1 + 1) ≤ (♯‘(2nd𝐶)) ↔ 2 ≤ (♯‘(2nd𝐶)))
1413biimpi 208 . . . . . . . . . . . 12 ((1 + 1) ≤ (♯‘(2nd𝐶)) → 2 ≤ (♯‘(2nd𝐶)))
1511, 14syl6bir 246 . . . . . . . . . . 11 ((♯‘(2nd𝐶)) ∈ ℕ0 → (1 ≤ ((♯‘(2nd𝐶)) − 1) → 2 ≤ (♯‘(2nd𝐶))))
164, 5, 153syl 18 . . . . . . . . . 10 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → (1 ≤ ((♯‘(2nd𝐶)) − 1) → 2 ≤ (♯‘(2nd𝐶))))
178, 16sylbid 232 . . . . . . . . 9 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → (1 ≤ (♯‘(1st𝐶)) → 2 ≤ (♯‘(2nd𝐶))))
1817imp 397 . . . . . . . 8 (((1st𝐶)(Walks‘𝐺)(2nd𝐶) ∧ 1 ≤ (♯‘(1st𝐶))) → 2 ≤ (♯‘(2nd𝐶)))
19 ige2m1fz 12725 . . . . . . . 8 (((♯‘(2nd𝐶)) ∈ ℕ0 ∧ 2 ≤ (♯‘(2nd𝐶))) → ((♯‘(2nd𝐶)) − 1) ∈ (0...(♯‘(2nd𝐶))))
206, 18, 19syl2an2r 677 . . . . . . 7 (((1st𝐶)(Walks‘𝐺)(2nd𝐶) ∧ 1 ≤ (♯‘(1st𝐶))) → ((♯‘(2nd𝐶)) − 1) ∈ (0...(♯‘(2nd𝐶))))
21 swrd0lenOLD 13709 . . . . . . 7 (((2nd𝐶) ∈ Word (Vtx‘𝐺) ∧ ((♯‘(2nd𝐶)) − 1) ∈ (0...(♯‘(2nd𝐶)))) → (♯‘((2nd𝐶) substr ⟨0, ((♯‘(2nd𝐶)) − 1)⟩)) = ((♯‘(2nd𝐶)) − 1))
224, 20, 21syl2an2r 677 . . . . . 6 (((1st𝐶)(Walks‘𝐺)(2nd𝐶) ∧ 1 ≤ (♯‘(1st𝐶))) → (♯‘((2nd𝐶) substr ⟨0, ((♯‘(2nd𝐶)) − 1)⟩)) = ((♯‘(2nd𝐶)) − 1))
237eqcomd 2832 . . . . . . 7 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → ((♯‘(2nd𝐶)) − 1) = (♯‘(1st𝐶)))
2423adantr 474 . . . . . 6 (((1st𝐶)(Walks‘𝐺)(2nd𝐶) ∧ 1 ≤ (♯‘(1st𝐶))) → ((♯‘(2nd𝐶)) − 1) = (♯‘(1st𝐶)))
2522, 24eqtrd 2862 . . . . 5 (((1st𝐶)(Walks‘𝐺)(2nd𝐶) ∧ 1 ≤ (♯‘(1st𝐶))) → (♯‘((2nd𝐶) substr ⟨0, ((♯‘(2nd𝐶)) − 1)⟩)) = (♯‘(1st𝐶)))
2625ex 403 . . . 4 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → (1 ≤ (♯‘(1st𝐶)) → (♯‘((2nd𝐶) substr ⟨0, ((♯‘(2nd𝐶)) − 1)⟩)) = (♯‘(1st𝐶))))
272, 26sylbi 209 . . 3 (𝐶 ∈ (Walks‘𝐺) → (1 ≤ (♯‘(1st𝐶)) → (♯‘((2nd𝐶) substr ⟨0, ((♯‘(2nd𝐶)) − 1)⟩)) = (♯‘(1st𝐶))))
281, 27syl 17 . 2 (𝐶 ∈ (ClWalks‘𝐺) → (1 ≤ (♯‘(1st𝐶)) → (♯‘((2nd𝐶) substr ⟨0, ((♯‘(2nd𝐶)) − 1)⟩)) = (♯‘(1st𝐶))))
2928imp 397 1 ((𝐶 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝐶))) → (♯‘((2nd𝐶) substr ⟨0, ((♯‘(2nd𝐶)) − 1)⟩)) = (♯‘(1st𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   = wceq 1658   ∈ wcel 2166  ⟨cop 4404   class class class wbr 4874  ‘cfv 6124  (class class class)co 6906  1st c1st 7427  2nd c2nd 7428  0cc0 10253  1c1 10254   + caddc 10256   ≤ cle 10393   − cmin 10586  2c2 11407  ℕ0cn0 11619  ...cfz 12620  ♯chash 13411  Word cword 13575   substr csubstr 13701  Vtxcvtx 26295  Walkscwlks 26895  ClWalkscclwlks 27073 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-ifp 1092  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-oadd 7831  df-er 8010  df-map 8125  df-pm 8126  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-card 9079  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-2 11415  df-n0 11620  df-z 11706  df-uz 11970  df-fz 12621  df-fzo 12762  df-hash 13412  df-word 13576  df-substr 13702  df-wlks 26898  df-clwlks 27074 This theorem is referenced by:  clwlknf1oclwwlknOLD  27454
 Copyright terms: Public domain W3C validator