Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlknf1oclwwlknlem3OLD Structured version   Visualization version   GIF version

Theorem clwlknf1oclwwlknlem3OLD 27417
 Description: Obsolete version of clwlknf1oclwwlknlem3 27415 as of 12-Oct-2022. (Contributed by AV, 26-May-2022.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
clwlknf1oclwwlknOLD.a 𝐴 = (1st𝑐)
clwlknf1oclwwlknOLD.b 𝐵 = (2nd𝑐)
clwlknf1oclwwlknOLD.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁}
clwlknf1oclwwlknOLD.f 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (♯‘𝐴)⟩))
Assertion
Ref Expression
clwlknf1oclwwlknlem3OLD ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹 = ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ (𝐵 substr ⟨0, (♯‘𝐴)⟩)) ↾ 𝐶))
Distinct variable groups:   𝐶,𝑐   𝐺,𝑐,𝑤   𝑤,𝑁
Allowed substitution hints:   𝐴(𝑤,𝑐)   𝐵(𝑤,𝑐)   𝐶(𝑤)   𝐹(𝑤,𝑐)   𝑁(𝑐)

Proof of Theorem clwlknf1oclwwlknlem3OLD
StepHypRef Expression
1 clwlknf1oclwwlknOLD.c . . . 4 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁}
2 nnge1 11342 . . . . . . 7 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
3 breq2 4847 . . . . . . 7 ((♯‘(1st𝑤)) = 𝑁 → (1 ≤ (♯‘(1st𝑤)) ↔ 1 ≤ 𝑁))
42, 3syl5ibrcom 239 . . . . . 6 (𝑁 ∈ ℕ → ((♯‘(1st𝑤)) = 𝑁 → 1 ≤ (♯‘(1st𝑤))))
54ad2antlr 719 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑤 ∈ (ClWalks‘𝐺)) → ((♯‘(1st𝑤)) = 𝑁 → 1 ≤ (♯‘(1st𝑤))))
65ss2rabdv 3879 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ⊆ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))})
71, 6syl5eqss 3845 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐶 ⊆ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))})
8 resmpt 5661 . . 3 (𝐶 ⊆ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} → ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ (𝐵 substr ⟨0, (♯‘𝐴)⟩)) ↾ 𝐶) = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (♯‘𝐴)⟩)))
97, 8syl 17 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ (𝐵 substr ⟨0, (♯‘𝐴)⟩)) ↾ 𝐶) = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (♯‘𝐴)⟩)))
10 clwlknf1oclwwlknOLD.f . 2 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (♯‘𝐴)⟩))
119, 10syl6reqr 2852 1 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹 = ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ (𝐵 substr ⟨0, (♯‘𝐴)⟩)) ↾ 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 385   = wceq 1653   ∈ wcel 2157  {crab 3093   ⊆ wss 3769  ⟨cop 4374   class class class wbr 4843   ↦ cmpt 4922   ↾ cres 5314  ‘cfv 6101  (class class class)co 6878  1st c1st 7399  2nd c2nd 7400  0cc0 10224  1c1 10225   ≤ cle 10364  ℕcn 11312  ♯chash 13370   substr csubstr 13664  USPGraphcuspgr 26384  ClWalkscclwlks 27024 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313 This theorem is referenced by:  clwlknf1oclwwlknOLD  27418
 Copyright terms: Public domain W3C validator