Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlksf1oclwwlkOLD Structured version   Visualization version   GIF version

Theorem clwlksf1oclwwlkOLD 27447
 Description: Obsolete version of clwlknf1oclwwlkn 27452 as of 26-May-2022. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
clwlksfclwwlkOLD.1 𝐴 = (1st𝑐)
clwlksfclwwlkOLD.2 𝐵 = (2nd𝑐)
clwlksfclwwlkOLD.c 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘𝐴) = 𝑁}
clwlksfclwwlkOLD.f 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (♯‘𝐴)⟩))
Assertion
Ref Expression
clwlksf1oclwwlkOLD ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝐹:𝐶1-1-onto→(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝐺,𝑐   𝑁,𝑐   𝐶,𝑐   𝐹,𝑐
Allowed substitution hints:   𝐴(𝑐)   𝐵(𝑐)

Proof of Theorem clwlksf1oclwwlkOLD
StepHypRef Expression
1 clwlksfclwwlkOLD.1 . . 3 𝐴 = (1st𝑐)
2 clwlksfclwwlkOLD.2 . . 3 𝐵 = (2nd𝑐)
3 clwlksfclwwlkOLD.c . . 3 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘𝐴) = 𝑁}
4 clwlksfclwwlkOLD.f . . 3 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (♯‘𝐴)⟩))
51, 2, 3, 4clwlksf1clwwlkOLD 27446 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝐹:𝐶1-1→(𝑁 ClWWalksN 𝐺))
61, 2, 3, 4clwlksfoclwwlkOLD 27440 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝐹:𝐶onto→(𝑁 ClWWalksN 𝐺))
7 df-f1o 6131 . 2 (𝐹:𝐶1-1-onto→(𝑁 ClWWalksN 𝐺) ↔ (𝐹:𝐶1-1→(𝑁 ClWWalksN 𝐺) ∧ 𝐹:𝐶onto→(𝑁 ClWWalksN 𝐺)))
85, 6, 7sylanbrc 580 1 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝐹:𝐶1-1-onto→(𝑁 ClWWalksN 𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   = wceq 1658   ∈ wcel 2166  {crab 3122  ⟨cop 4404   ↦ cmpt 4953  –1-1→wf1 6121  –onto→wfo 6122  –1-1-onto→wf1o 6123  ‘cfv 6124  (class class class)co 6906  1st c1st 7427  2nd c2nd 7428  0cc0 10253  ♯chash 13411   substr csubstr 13701  ℙcprime 15758  FinUSGraphcfusgr 26614  ClWalkscclwlks 27073   ClWWalksN cclwwlkn 27363 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-ifp 1092  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-2o 7828  df-oadd 7831  df-er 8010  df-map 8125  df-pm 8126  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-sup 8618  df-card 9079  df-cda 9306  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-nn 11352  df-2 11415  df-3 11416  df-n0 11620  df-xnn0 11692  df-z 11706  df-uz 11970  df-rp 12114  df-fz 12621  df-fzo 12762  df-seq 13097  df-exp 13156  df-hash 13412  df-word 13576  df-lsw 13624  df-concat 13632  df-s1 13657  df-substr 13702  df-pfx 13751  df-cj 14217  df-re 14218  df-im 14219  df-sqrt 14353  df-abs 14354  df-dvds 15359  df-prm 15759  df-edg 26347  df-uhgr 26357  df-upgr 26381  df-uspgr 26450  df-usgr 26451  df-fusgr 26615  df-wlks 26898  df-clwlks 27074  df-clwwlk 27312  df-clwwlkn 27365 This theorem is referenced by:  clwlkssizeeqOLDOLD  27457
 Copyright terms: Public domain W3C validator