![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlksfclwwlk1hashOLD | Structured version Visualization version GIF version |
Description: Obsolete as of 23-May-2022. (Contributed by Alexander van der Vekens, 25-Jun-2018.) (Revised by AV, 2-May-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
clwlksfclwwlkOLD.1 | ⊢ 𝐴 = (1st ‘𝑐) |
clwlksfclwwlkOLD.2 | ⊢ 𝐵 = (2nd ‘𝑐) |
clwlksfclwwlkOLD.c | ⊢ 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘𝐴) = 𝑁} |
clwlksfclwwlkOLD.f | ⊢ 𝐹 = (𝑐 ∈ 𝐶 ↦ (𝐵 substr 〈0, (♯‘𝐴)〉)) |
Ref | Expression |
---|---|
clwlksfclwwlk1hashOLD | ⊢ (𝑐 ∈ 𝐶 → (♯‘𝐴) ∈ (0...(♯‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlksfclwwlkOLD.c | . . 3 ⊢ 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘𝐴) = 𝑁} | |
2 | 1 | rabeq2i 3411 | . 2 ⊢ (𝑐 ∈ 𝐶 ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ (♯‘𝐴) = 𝑁)) |
3 | eqid 2826 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
4 | eqid 2826 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
5 | clwlksfclwwlkOLD.1 | . . . . 5 ⊢ 𝐴 = (1st ‘𝑐) | |
6 | clwlksfclwwlkOLD.2 | . . . . 5 ⊢ 𝐵 = (2nd ‘𝑐) | |
7 | 3, 4, 5, 6 | clwlkcompim 27083 | . . . 4 ⊢ (𝑐 ∈ (ClWalks‘𝐺) → ((𝐴 ∈ Word dom (iEdg‘𝐺) ∧ 𝐵:(0...(♯‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(♯‘𝐴))if-((𝐵‘𝑖) = (𝐵‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐴‘𝑖)) = {(𝐵‘𝑖)}, {(𝐵‘𝑖), (𝐵‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐴‘𝑖))) ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴))))) |
8 | lencl 13594 | . . . . . 6 ⊢ (𝐴 ∈ Word dom (iEdg‘𝐺) → (♯‘𝐴) ∈ ℕ0) | |
9 | ffn 6279 | . . . . . 6 ⊢ (𝐵:(0...(♯‘𝐴))⟶(Vtx‘𝐺) → 𝐵 Fn (0...(♯‘𝐴))) | |
10 | fnfz0hash 13520 | . . . . . . 7 ⊢ (((♯‘𝐴) ∈ ℕ0 ∧ 𝐵 Fn (0...(♯‘𝐴))) → (♯‘𝐵) = ((♯‘𝐴) + 1)) | |
11 | nn0fz0 12733 | . . . . . . . . . 10 ⊢ ((♯‘𝐴) ∈ ℕ0 ↔ (♯‘𝐴) ∈ (0...(♯‘𝐴))) | |
12 | fzelp1 12687 | . . . . . . . . . 10 ⊢ ((♯‘𝐴) ∈ (0...(♯‘𝐴)) → (♯‘𝐴) ∈ (0...((♯‘𝐴) + 1))) | |
13 | 11, 12 | sylbi 209 | . . . . . . . . 9 ⊢ ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ (0...((♯‘𝐴) + 1))) |
14 | oveq2 6914 | . . . . . . . . . 10 ⊢ ((♯‘𝐵) = ((♯‘𝐴) + 1) → (0...(♯‘𝐵)) = (0...((♯‘𝐴) + 1))) | |
15 | 14 | eleq2d 2893 | . . . . . . . . 9 ⊢ ((♯‘𝐵) = ((♯‘𝐴) + 1) → ((♯‘𝐴) ∈ (0...(♯‘𝐵)) ↔ (♯‘𝐴) ∈ (0...((♯‘𝐴) + 1)))) |
16 | 13, 15 | syl5ibrcom 239 | . . . . . . . 8 ⊢ ((♯‘𝐴) ∈ ℕ0 → ((♯‘𝐵) = ((♯‘𝐴) + 1) → (♯‘𝐴) ∈ (0...(♯‘𝐵)))) |
17 | 16 | adantr 474 | . . . . . . 7 ⊢ (((♯‘𝐴) ∈ ℕ0 ∧ 𝐵 Fn (0...(♯‘𝐴))) → ((♯‘𝐵) = ((♯‘𝐴) + 1) → (♯‘𝐴) ∈ (0...(♯‘𝐵)))) |
18 | 10, 17 | mpd 15 | . . . . . 6 ⊢ (((♯‘𝐴) ∈ ℕ0 ∧ 𝐵 Fn (0...(♯‘𝐴))) → (♯‘𝐴) ∈ (0...(♯‘𝐵))) |
19 | 8, 9, 18 | syl2an 591 | . . . . 5 ⊢ ((𝐴 ∈ Word dom (iEdg‘𝐺) ∧ 𝐵:(0...(♯‘𝐴))⟶(Vtx‘𝐺)) → (♯‘𝐴) ∈ (0...(♯‘𝐵))) |
20 | 19 | adantr 474 | . . . 4 ⊢ (((𝐴 ∈ Word dom (iEdg‘𝐺) ∧ 𝐵:(0...(♯‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(♯‘𝐴))if-((𝐵‘𝑖) = (𝐵‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐴‘𝑖)) = {(𝐵‘𝑖)}, {(𝐵‘𝑖), (𝐵‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐴‘𝑖))) ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)))) → (♯‘𝐴) ∈ (0...(♯‘𝐵))) |
21 | 7, 20 | syl 17 | . . 3 ⊢ (𝑐 ∈ (ClWalks‘𝐺) → (♯‘𝐴) ∈ (0...(♯‘𝐵))) |
22 | 21 | adantr 474 | . 2 ⊢ ((𝑐 ∈ (ClWalks‘𝐺) ∧ (♯‘𝐴) = 𝑁) → (♯‘𝐴) ∈ (0...(♯‘𝐵))) |
23 | 2, 22 | sylbi 209 | 1 ⊢ (𝑐 ∈ 𝐶 → (♯‘𝐴) ∈ (0...(♯‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 if-wif 1091 = wceq 1658 ∈ wcel 2166 ∀wral 3118 {crab 3122 ⊆ wss 3799 {csn 4398 {cpr 4400 〈cop 4404 ↦ cmpt 4953 dom cdm 5343 Fn wfn 6119 ⟶wf 6120 ‘cfv 6124 (class class class)co 6906 1st c1st 7427 2nd c2nd 7428 0cc0 10253 1c1 10254 + caddc 10256 ℕ0cn0 11619 ...cfz 12620 ..^cfzo 12761 ♯chash 13411 Word cword 13575 substr csubstr 13701 Vtxcvtx 26295 iEdgciedg 26296 ClWalkscclwlks 27073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-ifp 1092 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-oadd 7831 df-er 8010 df-map 8125 df-pm 8126 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-card 9079 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-n0 11620 df-z 11706 df-uz 11970 df-fz 12621 df-fzo 12762 df-hash 13412 df-word 13576 df-wlks 26898 df-clwlks 27074 |
This theorem is referenced by: clwlksfclwwlk2sswdOLD 27438 clwlksfclwwlkOLD 27439 |
Copyright terms: Public domain | W3C validator |