![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlksfclwwlk2wrdOLD | Structured version Visualization version GIF version |
Description: Obsolete as of 23-May-2022. (Contributed by Alexander van der Vekens, 25-Jun-2018.) (Revised by AV, 2-May-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
clwlksfclwwlkOLD.1 | ⊢ 𝐴 = (1st ‘𝑐) |
clwlksfclwwlkOLD.2 | ⊢ 𝐵 = (2nd ‘𝑐) |
clwlksfclwwlkOLD.c | ⊢ 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘𝐴) = 𝑁} |
clwlksfclwwlkOLD.f | ⊢ 𝐹 = (𝑐 ∈ 𝐶 ↦ (𝐵 substr 〈0, (♯‘𝐴)〉)) |
Ref | Expression |
---|---|
clwlksfclwwlk2wrdOLD | ⊢ (𝑐 ∈ 𝐶 → 𝐵 ∈ Word (Vtx‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlksfclwwlkOLD.c | . . 3 ⊢ 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘𝐴) = 𝑁} | |
2 | 1 | rabeq2i 3382 | . 2 ⊢ (𝑐 ∈ 𝐶 ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ (♯‘𝐴) = 𝑁)) |
3 | eqid 2800 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
4 | eqid 2800 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
5 | clwlksfclwwlkOLD.1 | . . . . 5 ⊢ 𝐴 = (1st ‘𝑐) | |
6 | clwlksfclwwlkOLD.2 | . . . . 5 ⊢ 𝐵 = (2nd ‘𝑐) | |
7 | 3, 4, 5, 6 | clwlkcompim 27033 | . . . 4 ⊢ (𝑐 ∈ (ClWalks‘𝐺) → ((𝐴 ∈ Word dom (iEdg‘𝐺) ∧ 𝐵:(0...(♯‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(♯‘𝐴))if-((𝐵‘𝑖) = (𝐵‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐴‘𝑖)) = {(𝐵‘𝑖)}, {(𝐵‘𝑖), (𝐵‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐴‘𝑖))) ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴))))) |
8 | lencl 13552 | . . . . . 6 ⊢ (𝐴 ∈ Word dom (iEdg‘𝐺) → (♯‘𝐴) ∈ ℕ0) | |
9 | nn0z 11689 | . . . . . . . . . 10 ⊢ ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℤ) | |
10 | fzval3 12791 | . . . . . . . . . 10 ⊢ ((♯‘𝐴) ∈ ℤ → (0...(♯‘𝐴)) = (0..^((♯‘𝐴) + 1))) | |
11 | 9, 10 | syl 17 | . . . . . . . . 9 ⊢ ((♯‘𝐴) ∈ ℕ0 → (0...(♯‘𝐴)) = (0..^((♯‘𝐴) + 1))) |
12 | 11 | feq2d 6243 | . . . . . . . 8 ⊢ ((♯‘𝐴) ∈ ℕ0 → (𝐵:(0...(♯‘𝐴))⟶(Vtx‘𝐺) ↔ 𝐵:(0..^((♯‘𝐴) + 1))⟶(Vtx‘𝐺))) |
13 | 12 | biimpa 469 | . . . . . . 7 ⊢ (((♯‘𝐴) ∈ ℕ0 ∧ 𝐵:(0...(♯‘𝐴))⟶(Vtx‘𝐺)) → 𝐵:(0..^((♯‘𝐴) + 1))⟶(Vtx‘𝐺)) |
14 | iswrdi 13537 | . . . . . . 7 ⊢ (𝐵:(0..^((♯‘𝐴) + 1))⟶(Vtx‘𝐺) → 𝐵 ∈ Word (Vtx‘𝐺)) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (((♯‘𝐴) ∈ ℕ0 ∧ 𝐵:(0...(♯‘𝐴))⟶(Vtx‘𝐺)) → 𝐵 ∈ Word (Vtx‘𝐺)) |
16 | 8, 15 | sylan 576 | . . . . 5 ⊢ ((𝐴 ∈ Word dom (iEdg‘𝐺) ∧ 𝐵:(0...(♯‘𝐴))⟶(Vtx‘𝐺)) → 𝐵 ∈ Word (Vtx‘𝐺)) |
17 | 16 | adantr 473 | . . . 4 ⊢ (((𝐴 ∈ Word dom (iEdg‘𝐺) ∧ 𝐵:(0...(♯‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(♯‘𝐴))if-((𝐵‘𝑖) = (𝐵‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐴‘𝑖)) = {(𝐵‘𝑖)}, {(𝐵‘𝑖), (𝐵‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐴‘𝑖))) ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)))) → 𝐵 ∈ Word (Vtx‘𝐺)) |
18 | 7, 17 | syl 17 | . . 3 ⊢ (𝑐 ∈ (ClWalks‘𝐺) → 𝐵 ∈ Word (Vtx‘𝐺)) |
19 | 18 | adantr 473 | . 2 ⊢ ((𝑐 ∈ (ClWalks‘𝐺) ∧ (♯‘𝐴) = 𝑁) → 𝐵 ∈ Word (Vtx‘𝐺)) |
20 | 2, 19 | sylbi 209 | 1 ⊢ (𝑐 ∈ 𝐶 → 𝐵 ∈ Word (Vtx‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 if-wif 1086 = wceq 1653 ∈ wcel 2157 ∀wral 3090 {crab 3094 ⊆ wss 3770 {csn 4369 {cpr 4371 〈cop 4375 ↦ cmpt 4923 dom cdm 5313 ⟶wf 6098 ‘cfv 6102 (class class class)co 6879 1st c1st 7400 2nd c2nd 7401 0cc0 10225 1c1 10226 + caddc 10228 ℕ0cn0 11579 ℤcz 11665 ...cfz 12579 ..^cfzo 12719 ♯chash 13369 Word cword 13533 substr csubstr 13663 Vtxcvtx 26230 iEdgciedg 26231 ClWalkscclwlks 27023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-ifp 1087 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-1st 7402 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-oadd 7804 df-er 7983 df-map 8098 df-pm 8099 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-card 9052 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-nn 11314 df-n0 11580 df-z 11666 df-uz 11930 df-fz 12580 df-fzo 12720 df-hash 13370 df-word 13534 df-wlks 26848 df-clwlks 27024 |
This theorem is referenced by: clwlksfclwwlk2sswdOLD 27401 clwlksfclwwlkOLD 27402 |
Copyright terms: Public domain | W3C validator |