Step | Hyp | Ref
| Expression |
1 | | clwlksfclwwlk.1 |
. . 3
⊢ 𝐴 = (1st ‘𝑐) |
2 | | clwlksfclwwlk.2 |
. . 3
⊢ 𝐵 = (2nd ‘𝑐) |
3 | | clwlksfclwwlk.c |
. . 3
⊢ 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘𝐴) = 𝑁} |
4 | | clwlksfclwwlk.f |
. . 3
⊢ 𝐹 = (𝑐 ∈ 𝐶 ↦ (𝐵 substr 〈0, (♯‘𝐴)〉)) |
5 | 1, 2, 3, 4 | clwlksfclwwlkOLD 27243 |
. 2
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝐹:𝐶⟶(𝑁 ClWWalksN 𝐺)) |
6 | | eqid 2771 |
. . . . . 6
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
7 | 6 | clwwlknbp 27190 |
. . . . 5
⊢ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) |
8 | 7 | adantl 467 |
. . . 4
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) |
9 | | isclwwlkn 27180 |
. . . . . . 7
⊢ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑤 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑤) = 𝑁)) |
10 | | fusgrusgr 26437 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈
USGraph) |
11 | | usgruspgr 26295 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ USGraph → 𝐺 ∈
USPGraph) |
12 | 10, 11 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈
USPGraph) |
13 | 12 | adantr 466 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝐺 ∈
USPGraph) |
14 | 13 | adantr 466 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) → 𝐺 ∈ USPGraph) |
15 | | simprl 754 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) → 𝑤 ∈ Word (Vtx‘𝐺)) |
16 | | eleq1 2838 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑤) =
𝑁 →
((♯‘𝑤) ∈
ℙ ↔ 𝑁 ∈
ℙ)) |
17 | | prmnn 15595 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝑤)
∈ ℙ → (♯‘𝑤) ∈ ℕ) |
18 | 17 | nnge1d 11269 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑤)
∈ ℙ → 1 ≤ (♯‘𝑤)) |
19 | 16, 18 | syl6bir 244 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑤) =
𝑁 → (𝑁 ∈ ℙ → 1 ≤
(♯‘𝑤))) |
20 | 19 | adantl 467 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁) → (𝑁 ∈ ℙ → 1 ≤
(♯‘𝑤))) |
21 | 20 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℙ → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁) → 1 ≤ (♯‘𝑤))) |
22 | 21 | adantl 467 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁) → 1 ≤ (♯‘𝑤))) |
23 | 22 | imp 393 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) → 1 ≤ (♯‘𝑤)) |
24 | | eqid 2771 |
. . . . . . . . . . 11
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
25 | 6, 24 | clwlkclwwlk2 27153 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) →
(∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ 〈“(𝑤‘0)”〉) ↔ 𝑤 ∈ (ClWWalks‘𝐺))) |
26 | 14, 15, 23, 25 | syl3anc 1476 |
. . . . . . . . 9
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ 〈“(𝑤‘0)”〉) ↔ 𝑤 ∈ (ClWWalks‘𝐺))) |
27 | 26 | bicomd 213 |
. . . . . . . 8
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) → (𝑤 ∈ (ClWWalks‘𝐺) ↔ ∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ 〈“(𝑤‘0)”〉))) |
28 | 27 | anbi1d 615 |
. . . . . . 7
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) → ((𝑤 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑤) = 𝑁) ↔ (∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ 〈“(𝑤‘0)”〉) ∧
(♯‘𝑤) = 𝑁))) |
29 | 9, 28 | syl5bb 272 |
. . . . . 6
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ↔ (∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ 〈“(𝑤‘0)”〉) ∧
(♯‘𝑤) = 𝑁))) |
30 | | df-br 4788 |
. . . . . . . . 9
⊢ (𝑓(ClWalks‘𝐺)(𝑤 ++ 〈“(𝑤‘0)”〉) ↔ 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺)) |
31 | | simpl 468 |
. . . . . . . . . . . . 13
⊢
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) → 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺)) |
32 | | prmnn 15595 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℙ → 𝑁 ∈
ℕ) |
33 | 32 | nnge1d 11269 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℙ → 1 ≤
𝑁) |
34 | 33 | ad2antlr 706 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) → 1 ≤ 𝑁) |
35 | | breq2 4791 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝑤) =
𝑁 → (1 ≤
(♯‘𝑤) ↔ 1
≤ 𝑁)) |
36 | 35 | ad2antll 708 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) → (1 ≤ (♯‘𝑤) ↔ 1 ≤ 𝑁)) |
37 | 34, 36 | mpbird 247 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) → 1 ≤ (♯‘𝑤)) |
38 | 15, 37 | jca 501 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) |
39 | | clwlkwlk 26906 |
. . . . . . . . . . . . . . . 16
⊢
(〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
→ 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (Walks‘𝐺)) |
40 | | wlklenvclwlk 26786 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) →
(〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (Walks‘𝐺)
→ (♯‘𝑓) =
(♯‘𝑤))) |
41 | 38, 39, 40 | syl2im 40 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) → (〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺) →
(♯‘𝑓) =
(♯‘𝑤))) |
42 | 41 | impcom 394 |
. . . . . . . . . . . . . 14
⊢
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) → (♯‘𝑓) = (♯‘𝑤)) |
43 | | vex 3354 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑓 ∈ V |
44 | | ovex 6827 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ++ 〈“(𝑤‘0)”〉) ∈
V |
45 | 43, 44 | op1st 7327 |
. . . . . . . . . . . . . . . . 17
⊢
(1st ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉) = 𝑓 |
46 | 45 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) → (1st ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉) = 𝑓) |
47 | 46 | fveq2d 6337 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) → (♯‘(1st
‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉))
= (♯‘𝑓)) |
48 | 47 | adantl 467 |
. . . . . . . . . . . . . 14
⊢
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) →
(♯‘(1st ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)) =
(♯‘𝑓)) |
49 | | eqcom 2778 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝑤) =
𝑁 ↔ 𝑁 = (♯‘𝑤)) |
50 | 49 | biimpi 206 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝑤) =
𝑁 → 𝑁 = (♯‘𝑤)) |
51 | 50 | ad2antll 708 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) → 𝑁 = (♯‘𝑤)) |
52 | 51 | adantl 467 |
. . . . . . . . . . . . . 14
⊢
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) → 𝑁 = (♯‘𝑤)) |
53 | 42, 48, 52 | 3eqtr4d 2815 |
. . . . . . . . . . . . 13
⊢
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) →
(♯‘(1st ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)) = 𝑁) |
54 | 1 | fveq2i 6336 |
. . . . . . . . . . . . . . . 16
⊢
(♯‘𝐴) =
(♯‘(1st ‘𝑐)) |
55 | 54 | eqeq1i 2776 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝐴) =
𝑁 ↔
(♯‘(1st ‘𝑐)) = 𝑁) |
56 | | fveq2 6333 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 →
(1st ‘𝑐) =
(1st ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)) |
57 | 56 | fveq2d 6337 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 →
(♯‘(1st ‘𝑐)) = (♯‘(1st
‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉))) |
58 | 57 | eqeq1d 2773 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 →
((♯‘(1st ‘𝑐)) = 𝑁 ↔ (♯‘(1st
‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉))
= 𝑁)) |
59 | 55, 58 | syl5bb 272 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 →
((♯‘𝐴) = 𝑁 ↔
(♯‘(1st ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)) = 𝑁)) |
60 | 59, 3 | elrab2 3518 |
. . . . . . . . . . . . 13
⊢
(〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ 𝐶 ↔
(〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ (♯‘(1st ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)) = 𝑁)) |
61 | 31, 53, 60 | sylanbrc 572 |
. . . . . . . . . . . 12
⊢
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) → 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈ 𝐶) |
62 | 42 | adantr 466 |
. . . . . . . . . . . . . . . . . 18
⊢
(((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) ∧ 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺)) →
(♯‘𝑓) =
(♯‘𝑤)) |
63 | 62 | opeq2d 4547 |
. . . . . . . . . . . . . . . . 17
⊢
(((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) ∧ 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺)) →
〈0, (♯‘𝑓)〉 = 〈0, (♯‘𝑤)〉) |
64 | 63 | oveq2d 6812 |
. . . . . . . . . . . . . . . 16
⊢
(((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) ∧ 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺)) →
((𝑤 ++ 〈“(𝑤‘0)”〉) substr
〈0, (♯‘𝑓)〉) = ((𝑤 ++ 〈“(𝑤‘0)”〉) substr 〈0,
(♯‘𝑤)〉)) |
65 | | simpr 471 |
. . . . . . . . . . . . . . . . . 18
⊢
(((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) ∧ 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺)) →
〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)) |
66 | 41 | adantl 467 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) → (〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺) →
(♯‘𝑓) =
(♯‘𝑤))) |
67 | | eqeq2 2782 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 = (♯‘𝑤) → ((♯‘𝑓) = 𝑁 ↔ (♯‘𝑓) = (♯‘𝑤))) |
68 | 67 | eqcoms 2779 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((♯‘𝑤) =
𝑁 →
((♯‘𝑓) = 𝑁 ↔ (♯‘𝑓) = (♯‘𝑤))) |
69 | 68 | imbi2d 329 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((♯‘𝑤) =
𝑁 → ((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺) →
(♯‘𝑓) = 𝑁) ↔ (〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺) →
(♯‘𝑓) =
(♯‘𝑤)))) |
70 | 69 | ad2antll 708 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) → ((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺) →
(♯‘𝑓) = 𝑁) ↔ (〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺) →
(♯‘𝑓) =
(♯‘𝑤)))) |
71 | 70 | adantl 467 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) → ((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺) →
(♯‘𝑓) = 𝑁) ↔ (〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺) →
(♯‘𝑓) =
(♯‘𝑤)))) |
72 | 66, 71 | mpbird 247 |
. . . . . . . . . . . . . . . . . . 19
⊢
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) → (〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺) →
(♯‘𝑓) = 𝑁)) |
73 | 72 | imp 393 |
. . . . . . . . . . . . . . . . . 18
⊢
(((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) ∧ 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺)) →
(♯‘𝑓) = 𝑁) |
74 | 45 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 →
(1st ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉) = 𝑓) |
75 | 74 | fveq2d 6337 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 →
(♯‘(1st ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)) =
(♯‘𝑓)) |
76 | 57, 75 | eqtrd 2805 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 →
(♯‘(1st ‘𝑐)) = (♯‘𝑓)) |
77 | 76 | eqeq1d 2773 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 →
((♯‘(1st ‘𝑐)) = 𝑁 ↔ (♯‘𝑓) = 𝑁)) |
78 | 55, 77 | syl5bb 272 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 →
((♯‘𝐴) = 𝑁 ↔ (♯‘𝑓) = 𝑁)) |
79 | 78, 3 | elrab2 3518 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ 𝐶 ↔
(〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ (♯‘𝑓) =
𝑁)) |
80 | 65, 73, 79 | sylanbrc 572 |
. . . . . . . . . . . . . . . . 17
⊢
(((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) ∧ 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺)) →
〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ 𝐶) |
81 | | ovex 6827 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ++ 〈“(𝑤‘0)”〉) substr
〈0, (♯‘𝑓)〉) ∈ V |
82 | 54 | opeq2i 4544 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 〈0,
(♯‘𝐴)〉 =
〈0, (♯‘(1st ‘𝑐))〉 |
83 | 2, 82 | oveq12i 6808 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 substr 〈0,
(♯‘𝐴)〉) =
((2nd ‘𝑐)
substr 〈0, (♯‘(1st ‘𝑐))〉) |
84 | | fveq2 6333 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 →
(2nd ‘𝑐) =
(2nd ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)) |
85 | 57 | opeq2d 4547 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 → 〈0,
(♯‘(1st ‘𝑐))〉 = 〈0,
(♯‘(1st ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉))〉) |
86 | 84, 85 | oveq12d 6814 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 →
((2nd ‘𝑐)
substr 〈0, (♯‘(1st ‘𝑐))〉) = ((2nd
‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)
substr 〈0, (♯‘(1st ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉))〉)) |
87 | 43, 44 | op2nd 7328 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(2nd ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉) = (𝑤 ++ 〈“(𝑤‘0)”〉) |
88 | 45 | fveq2i 6336 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(♯‘(1st ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)) =
(♯‘𝑓) |
89 | 88 | opeq2i 4544 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 〈0,
(♯‘(1st ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉))〉 =
〈0, (♯‘𝑓)〉 |
90 | 87, 89 | oveq12i 6808 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((2nd ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉) substr
〈0, (♯‘(1st ‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉))〉) =
((𝑤 ++ 〈“(𝑤‘0)”〉) substr
〈0, (♯‘𝑓)〉) |
91 | 86, 90 | syl6eq 2821 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 →
((2nd ‘𝑐)
substr 〈0, (♯‘(1st ‘𝑐))〉) = ((𝑤 ++ 〈“(𝑤‘0)”〉) substr 〈0,
(♯‘𝑓)〉)) |
92 | 83, 91 | syl5eq 2817 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 → (𝐵 substr 〈0,
(♯‘𝐴)〉) =
((𝑤 ++ 〈“(𝑤‘0)”〉) substr
〈0, (♯‘𝑓)〉)) |
93 | 92, 4 | fvmptg 6424 |
. . . . . . . . . . . . . . . . 17
⊢
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ 𝐶 ∧ ((𝑤 ++ 〈“(𝑤‘0)”〉) substr
〈0, (♯‘𝑓)〉) ∈ V) → (𝐹‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉) = ((𝑤 ++ 〈“(𝑤‘0)”〉) substr
〈0, (♯‘𝑓)〉)) |
94 | 80, 81, 93 | sylancl 574 |
. . . . . . . . . . . . . . . 16
⊢
(((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) ∧ 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺)) →
(𝐹‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉) = ((𝑤 ++ 〈“(𝑤‘0)”〉) substr
〈0, (♯‘𝑓)〉)) |
95 | 38 | ad2antlr 706 |
. . . . . . . . . . . . . . . . 17
⊢
(((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) ∧ 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺)) →
(𝑤 ∈ Word
(Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤))) |
96 | | simpl 468 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) →
𝑤 ∈ Word
(Vtx‘𝐺)) |
97 | | wrdsymb1 13539 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) →
(𝑤‘0) ∈
(Vtx‘𝐺)) |
98 | 97 | s1cld 13583 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) →
〈“(𝑤‘0)”〉 ∈ Word
(Vtx‘𝐺)) |
99 | | eqidd 2772 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) →
(♯‘𝑤) =
(♯‘𝑤)) |
100 | | swrdccatid 13706 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 〈“(𝑤‘0)”〉 ∈
Word (Vtx‘𝐺) ∧
(♯‘𝑤) =
(♯‘𝑤)) →
((𝑤 ++ 〈“(𝑤‘0)”〉) substr
〈0, (♯‘𝑤)〉) = 𝑤) |
101 | 96, 98, 99, 100 | syl3anc 1476 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) →
((𝑤 ++ 〈“(𝑤‘0)”〉) substr
〈0, (♯‘𝑤)〉) = 𝑤) |
102 | 101 | eqcomd 2777 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤
(♯‘𝑤)) →
𝑤 = ((𝑤 ++ 〈“(𝑤‘0)”〉) substr 〈0,
(♯‘𝑤)〉)) |
103 | 95, 102 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) ∧ 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺)) →
𝑤 = ((𝑤 ++ 〈“(𝑤‘0)”〉) substr 〈0,
(♯‘𝑤)〉)) |
104 | 64, 94, 103 | 3eqtr4rd 2816 |
. . . . . . . . . . . . . . 15
⊢
(((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) ∧ 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺)) →
𝑤 = (𝐹‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)) |
105 | 104 | ex 397 |
. . . . . . . . . . . . . 14
⊢
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) → (〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺) →
𝑤 = (𝐹‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉))) |
106 | 105 | adantr 466 |
. . . . . . . . . . . . 13
⊢
(((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) ∧ 𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉) →
(〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
→ 𝑤 = (𝐹‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉))) |
107 | | fveq2 6333 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 → (𝐹‘𝑐) = (𝐹‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)) |
108 | 107 | eqeq2d 2781 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 → (𝑤 = (𝐹‘𝑐) ↔ 𝑤 = (𝐹‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉))) |
109 | 108 | imbi2d 329 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 →
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
→ 𝑤 = (𝐹‘𝑐)) ↔ (〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺) →
𝑤 = (𝐹‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)))) |
110 | 109 | adantl 467 |
. . . . . . . . . . . . 13
⊢
(((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) ∧ 𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉) →
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
→ 𝑤 = (𝐹‘𝑐)) ↔ (〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺) →
𝑤 = (𝐹‘〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉)))) |
111 | 106, 110 | mpbird 247 |
. . . . . . . . . . . 12
⊢
(((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) ∧ 𝑐 = 〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉) →
(〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
→ 𝑤 = (𝐹‘𝑐))) |
112 | 61, 111 | rspcimedv 3462 |
. . . . . . . . . . 11
⊢
((〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
∧ ((𝐺 ∈ FinUSGraph
∧ 𝑁 ∈ ℙ)
∧ (𝑤 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁))) → (〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺) →
∃𝑐 ∈ 𝐶 𝑤 = (𝐹‘𝑐))) |
113 | 112 | ex 397 |
. . . . . . . . . 10
⊢
(〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉
∈ (ClWalks‘𝐺)
→ (((𝐺 ∈
FinUSGraph ∧ 𝑁 ∈
ℙ) ∧ (𝑤 ∈
Word (Vtx‘𝐺) ∧
(♯‘𝑤) = 𝑁)) → (〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺) →
∃𝑐 ∈ 𝐶 𝑤 = (𝐹‘𝑐)))) |
114 | 113 | pm2.43b 55 |
. . . . . . . . 9
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) → (〈𝑓, (𝑤 ++ 〈“(𝑤‘0)”〉)〉 ∈
(ClWalks‘𝐺) →
∃𝑐 ∈ 𝐶 𝑤 = (𝐹‘𝑐))) |
115 | 30, 114 | syl5bi 232 |
. . . . . . . 8
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) → (𝑓(ClWalks‘𝐺)(𝑤 ++ 〈“(𝑤‘0)”〉) → ∃𝑐 ∈ 𝐶 𝑤 = (𝐹‘𝑐))) |
116 | 115 | exlimdv 2013 |
. . . . . . 7
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ 〈“(𝑤‘0)”〉) → ∃𝑐 ∈ 𝐶 𝑤 = (𝐹‘𝑐))) |
117 | 116 | adantrd 479 |
. . . . . 6
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) → ((∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ 〈“(𝑤‘0)”〉) ∧
(♯‘𝑤) = 𝑁) → ∃𝑐 ∈ 𝐶 𝑤 = (𝐹‘𝑐))) |
118 | 29, 117 | sylbid 230 |
. . . . 5
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁)) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑐 ∈ 𝐶 𝑤 = (𝐹‘𝑐))) |
119 | 118 | impancom 439 |
. . . 4
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 𝑁) → ∃𝑐 ∈ 𝐶 𝑤 = (𝐹‘𝑐))) |
120 | 8, 119 | mpd 15 |
. . 3
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑐 ∈ 𝐶 𝑤 = (𝐹‘𝑐)) |
121 | 120 | ralrimiva 3115 |
. 2
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) →
∀𝑤 ∈ (𝑁 ClWWalksN 𝐺)∃𝑐 ∈ 𝐶 𝑤 = (𝐹‘𝑐)) |
122 | | dffo3 6519 |
. 2
⊢ (𝐹:𝐶–onto→(𝑁 ClWWalksN 𝐺) ↔ (𝐹:𝐶⟶(𝑁 ClWWalksN 𝐺) ∧ ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺)∃𝑐 ∈ 𝐶 𝑤 = (𝐹‘𝑐))) |
123 | 5, 121, 122 | sylanbrc 572 |
1
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝐹:𝐶–onto→(𝑁 ClWWalksN 𝐺)) |