Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkfoOLD Structured version   Visualization version   GIF version

Theorem clwwlkfoOLD 27441
 Description: Obsolete version of clwwlkfo 27446 as of 12-Oct-2022. (Contributed by Alexander van der Vekens, 29-Sep-2018.) (Revised by AV, 26-Apr-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
clwwlkf1o.d 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}
clwwlkf1oOLD.f 𝐹 = (𝑡𝐷 ↦ (𝑡 substr ⟨0, 𝑁⟩))
Assertion
Ref Expression
clwwlkfoOLD (𝑁 ∈ ℕ → 𝐹:𝐷onto→(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑡,𝐷   𝑡,𝐺,𝑤   𝑡,𝑁
Allowed substitution hints:   𝐷(𝑤)   𝐹(𝑤,𝑡)

Proof of Theorem clwwlkfoOLD
Dummy variables 𝑖 𝑥 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwwlkf1o.d . . 3 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}
2 clwwlkf1oOLD.f . . 3 𝐹 = (𝑡𝐷 ↦ (𝑡 substr ⟨0, 𝑁⟩))
31, 2clwwlkfOLD 27438 . 2 (𝑁 ∈ ℕ → 𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺))
4 eqid 2777 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2777 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
64, 5clwwlknp 27426 . . . . . . 7 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)))
7 simpr 479 . . . . . . . . . 10 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
8 simpl1 1199 . . . . . . . . . 10 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁))
9 3simpc 1143 . . . . . . . . . . 11 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)))
109adantr 474 . . . . . . . . . 10 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)))
111clwwlkel 27437 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺))) → (𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷)
127, 8, 10, 11syl3anc 1439 . . . . . . . . 9 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷)
13 opeq2 4637 . . . . . . . . . . . . . . 15 (𝑁 = (♯‘𝑝) → ⟨0, 𝑁⟩ = ⟨0, (♯‘𝑝)⟩)
1413eqcoms 2785 . . . . . . . . . . . . . 14 ((♯‘𝑝) = 𝑁 → ⟨0, 𝑁⟩ = ⟨0, (♯‘𝑝)⟩)
1514oveq2d 6938 . . . . . . . . . . . . 13 ((♯‘𝑝) = 𝑁 → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, (♯‘𝑝)⟩))
1615adantl 475 . . . . . . . . . . . 12 ((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, (♯‘𝑝)⟩))
17163ad2ant1 1124 . . . . . . . . . . 11 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, (♯‘𝑝)⟩))
1817adantr 474 . . . . . . . . . 10 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, (♯‘𝑝)⟩))
19 simpll 757 . . . . . . . . . . . . 13 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑝 ∈ Word (Vtx‘𝐺))
20 fstwrdne0 13646 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁)) → (𝑝‘0) ∈ (Vtx‘𝐺))
2120ancoms 452 . . . . . . . . . . . . . 14 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → (𝑝‘0) ∈ (Vtx‘𝐺))
2221s1cld 13693 . . . . . . . . . . . . 13 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → ⟨“(𝑝‘0)”⟩ ∈ Word (Vtx‘𝐺))
2319, 22jca 507 . . . . . . . . . . . 12 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → (𝑝 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑝‘0)”⟩ ∈ Word (Vtx‘𝐺)))
24233ad2antl1 1193 . . . . . . . . . . 11 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (𝑝 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑝‘0)”⟩ ∈ Word (Vtx‘𝐺)))
25 swrdccat1OLD 13777 . . . . . . . . . . 11 ((𝑝 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑝‘0)”⟩ ∈ Word (Vtx‘𝐺)) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, (♯‘𝑝)⟩) = 𝑝)
2624, 25syl 17 . . . . . . . . . 10 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, (♯‘𝑝)⟩) = 𝑝)
2718, 26eqtr2d 2814 . . . . . . . . 9 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → 𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩))
2812, 27jca 507 . . . . . . . 8 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩)))
2928ex 403 . . . . . . 7 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ ℕ → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩))))
306, 29syl 17 . . . . . 6 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ ℕ → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩))))
3130impcom 398 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩)))
32 oveq1 6929 . . . . . 6 (𝑥 = (𝑝 ++ ⟨“(𝑝‘0)”⟩) → (𝑥 substr ⟨0, 𝑁⟩) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩))
3332rspceeqv 3528 . . . . 5 (((𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩)) → ∃𝑥𝐷 𝑝 = (𝑥 substr ⟨0, 𝑁⟩))
3431, 33syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥𝐷 𝑝 = (𝑥 substr ⟨0, 𝑁⟩))
351, 2clwwlkfvOLD 27439 . . . . . . 7 (𝑥𝐷 → (𝐹𝑥) = (𝑥 substr ⟨0, 𝑁⟩))
3635eqeq2d 2787 . . . . . 6 (𝑥𝐷 → (𝑝 = (𝐹𝑥) ↔ 𝑝 = (𝑥 substr ⟨0, 𝑁⟩)))
3736adantl 475 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) ∧ 𝑥𝐷) → (𝑝 = (𝐹𝑥) ↔ 𝑝 = (𝑥 substr ⟨0, 𝑁⟩)))
3837rexbidva 3233 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → (∃𝑥𝐷 𝑝 = (𝐹𝑥) ↔ ∃𝑥𝐷 𝑝 = (𝑥 substr ⟨0, 𝑁⟩)))
3934, 38mpbird 249 . . 3 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥𝐷 𝑝 = (𝐹𝑥))
4039ralrimiva 3147 . 2 (𝑁 ∈ ℕ → ∀𝑝 ∈ (𝑁 ClWWalksN 𝐺)∃𝑥𝐷 𝑝 = (𝐹𝑥))
41 dffo3 6638 . 2 (𝐹:𝐷onto→(𝑁 ClWWalksN 𝐺) ↔ (𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺) ∧ ∀𝑝 ∈ (𝑁 ClWWalksN 𝐺)∃𝑥𝐷 𝑝 = (𝐹𝑥)))
423, 40, 41sylanbrc 578 1 (𝑁 ∈ ℕ → 𝐹:𝐷onto→(𝑁 ClWWalksN 𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1071   = wceq 1601   ∈ wcel 2106  ∀wral 3089  ∃wrex 3090  {crab 3093  {cpr 4399  ⟨cop 4403   ↦ cmpt 4965  ⟶wf 6131  –onto→wfo 6133  ‘cfv 6135  (class class class)co 6922  0cc0 10272  1c1 10273   + caddc 10275   − cmin 10606  ℕcn 11374  ..^cfzo 12784  ♯chash 13435  Word cword 13599  lastSclsw 13652   ++ cconcat 13660  ⟨“cs1 13685   substr csubstr 13730  Vtxcvtx 26344  Edgcedg 26395   WWalksN cwwlksn 27175   ClWWalksN cclwwlkn 27413 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-n0 11643  df-xnn0 11715  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-fzo 12785  df-hash 13436  df-word 13600  df-lsw 13653  df-concat 13661  df-s1 13686  df-substr 13731  df-wwlks 27179  df-wwlksn 27180  df-clwwlk 27362  df-clwwlkn 27414 This theorem is referenced by:  clwwlkf1oOLD  27442
 Copyright terms: Public domain W3C validator