![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlkfvOLD | Structured version Visualization version GIF version |
Description: Obsolete version of clwwlkfv 27560 as of 12-Oct-2022. (Contributed by Alexander van der Vekens, 28-Sep-2018.) (Revised by AV, 26-Apr-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
clwwlkf1o.d | ⊢ 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)} |
clwwlkf1oOLD.f | ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡 substr 〈0, 𝑁〉)) |
Ref | Expression |
---|---|
clwwlkfvOLD | ⊢ (𝑊 ∈ 𝐷 → (𝐹‘𝑊) = (𝑊 substr 〈0, 𝑁〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6977 | . 2 ⊢ (𝑡 = 𝑊 → (𝑡 substr 〈0, 𝑁〉) = (𝑊 substr 〈0, 𝑁〉)) | |
2 | clwwlkf1oOLD.f | . 2 ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡 substr 〈0, 𝑁〉)) | |
3 | ovex 7002 | . 2 ⊢ (𝑊 substr 〈0, 𝑁〉) ∈ V | |
4 | 1, 2, 3 | fvmpt 6589 | 1 ⊢ (𝑊 ∈ 𝐷 → (𝐹‘𝑊) = (𝑊 substr 〈0, 𝑁〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2048 {crab 3086 〈cop 4441 ↦ cmpt 5002 ‘cfv 6182 (class class class)co 6970 0cc0 10327 lastSclsw 13715 substr csubstr 13793 WWalksN cwwlksn 27302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3678 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-iota 6146 df-fun 6184 df-fv 6190 df-ov 6973 |
This theorem is referenced by: clwwlkf1OLD 27556 clwwlkfoOLD 27557 |
Copyright terms: Public domain | W3C validator |