![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknonOLD | Structured version Visualization version GIF version |
Description: Obsolete version of clwwlknon 27426 as of 24-Mar-2022. (Contributed by Alexander van der Vekens, 14-Sep-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 25-Feb-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
clwwlknon.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
clwwlknonOLD | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlknonmpt2 27425 | . . . 4 ⊢ (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) | |
2 | clwwlknon.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | eqcomi 2808 | . . . . 5 ⊢ (Vtx‘𝐺) = 𝑉 |
4 | eqid 2799 | . . . . 5 ⊢ ℕ0 = ℕ0 | |
5 | eqid 2799 | . . . . 5 ⊢ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣} | |
6 | 3, 4, 5 | mpt2eq123i 6952 | . . . 4 ⊢ (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) |
7 | 1, 6 | eqtri 2821 | . . 3 ⊢ (ClWWalksNOn‘𝐺) = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) |
8 | 7 | oveqi 6891 | . 2 ⊢ (𝑋(ClWWalksNOn‘𝐺)𝑁) = (𝑋(𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑁) |
9 | eqeq2 2810 | . . . 4 ⊢ (𝑣 = 𝑋 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑋)) | |
10 | 9 | rabbidv 3373 | . . 3 ⊢ (𝑣 = 𝑋 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
11 | oveq1 6885 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 ClWWalksN 𝐺) = (𝑁 ClWWalksN 𝐺)) | |
12 | 11 | rabeqdv 3378 | . . 3 ⊢ (𝑛 = 𝑁 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
13 | eqid 2799 | . . 3 ⊢ (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) | |
14 | ovex 6910 | . . . 4 ⊢ (𝑁 ClWWalksN 𝐺) ∈ V | |
15 | 14 | rabex 5007 | . . 3 ⊢ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ V |
16 | 10, 12, 13, 15 | ovmpt2 7030 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋(𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
17 | 8, 16 | syl5eq 2845 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {crab 3093 ‘cfv 6101 (class class class)co 6878 ↦ cmpt2 6880 0cc0 10224 ℕ0cn0 11580 Vtxcvtx 26231 ClWWalksN cclwwlkn 27326 ClWWalksNOncclwwlknon 27423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-1cn 10282 ax-addcl 10284 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-nn 11313 df-n0 11581 df-clwwlknon 27424 |
This theorem is referenced by: isclwwlknonOLD 27429 |
Copyright terms: Public domain | W3C validator |