Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonOLD Structured version   Visualization version   GIF version

Theorem clwwlknonOLD 27427
 Description: Obsolete version of clwwlknon 27426 as of 24-Mar-2022. (Contributed by Alexander van der Vekens, 14-Sep-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 25-Feb-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
clwwlknon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clwwlknonOLD ((𝑋𝑉𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑋
Allowed substitution hint:   𝑉(𝑤)

Proof of Theorem clwwlknonOLD
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwwlknonmpt2 27425 . . . 4 (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
2 clwwlknon.v . . . . . 6 𝑉 = (Vtx‘𝐺)
32eqcomi 2808 . . . . 5 (Vtx‘𝐺) = 𝑉
4 eqid 2799 . . . . 5 0 = ℕ0
5 eqid 2799 . . . . 5 {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}
63, 4, 5mpt2eq123i 6952 . . . 4 (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
71, 6eqtri 2821 . . 3 (ClWWalksNOn‘𝐺) = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
87oveqi 6891 . 2 (𝑋(ClWWalksNOn‘𝐺)𝑁) = (𝑋(𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑁)
9 eqeq2 2810 . . . 4 (𝑣 = 𝑋 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑋))
109rabbidv 3373 . . 3 (𝑣 = 𝑋 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
11 oveq1 6885 . . . 4 (𝑛 = 𝑁 → (𝑛 ClWWalksN 𝐺) = (𝑁 ClWWalksN 𝐺))
1211rabeqdv 3378 . . 3 (𝑛 = 𝑁 → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
13 eqid 2799 . . 3 (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
14 ovex 6910 . . . 4 (𝑁 ClWWalksN 𝐺) ∈ V
1514rabex 5007 . . 3 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ V
1610, 12, 13, 15ovmpt2 7030 . 2 ((𝑋𝑉𝑁 ∈ ℕ0) → (𝑋(𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
178, 16syl5eq 2845 1 ((𝑋𝑉𝑁 ∈ ℕ0) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 385   = wceq 1653   ∈ wcel 2157  {crab 3093  ‘cfv 6101  (class class class)co 6878   ↦ cmpt2 6880  0cc0 10224  ℕ0cn0 11580  Vtxcvtx 26231   ClWWalksN cclwwlkn 27326  ClWWalksNOncclwwlknon 27423 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-1cn 10282  ax-addcl 10284 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-nn 11313  df-n0 11581  df-clwwlknon 27424 This theorem is referenced by:  isclwwlknonOLD  27429
 Copyright terms: Public domain W3C validator