![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknonmpt2 | Structured version Visualization version GIF version |
Description: (ClWWalksNOn‘𝐺) is an operator mapping a vertex 𝑣 and a nonnegative integer 𝑛 to the set of closed walks on 𝑣 of length 𝑛 as words over the set of vertices in a graph 𝐺. (Contributed by AV, 25-Feb-2022.) |
Ref | Expression |
---|---|
clwwlknonmpt2 | ⊢ (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6332 | . . . 4 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
2 | eqidd 2772 | . . . 4 ⊢ (𝑔 = 𝐺 → ℕ0 = ℕ0) | |
3 | oveq2 6801 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑛 ClWWalksN 𝑔) = (𝑛 ClWWalksN 𝐺)) | |
4 | 3 | rabeqdv 3344 | . . . 4 ⊢ (𝑔 = 𝐺 → {𝑤 ∈ (𝑛 ClWWalksN 𝑔) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) |
5 | 1, 2, 4 | mpt2eq123dv 6864 | . . 3 ⊢ (𝑔 = 𝐺 → (𝑣 ∈ (Vtx‘𝑔), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝑔) ∣ (𝑤‘0) = 𝑣}) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) |
6 | df-clwwlknon 27260 | . . 3 ⊢ ClWWalksNOn = (𝑔 ∈ V ↦ (𝑣 ∈ (Vtx‘𝑔), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝑔) ∣ (𝑤‘0) = 𝑣})) | |
7 | fvex 6342 | . . . 4 ⊢ (Vtx‘𝐺) ∈ V | |
8 | nn0ex 11500 | . . . 4 ⊢ ℕ0 ∈ V | |
9 | 7, 8 | mpt2ex 7397 | . . 3 ⊢ (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) ∈ V |
10 | 5, 6, 9 | fvmpt 6424 | . 2 ⊢ (𝐺 ∈ V → (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) |
11 | fvprc 6326 | . . 3 ⊢ (¬ 𝐺 ∈ V → (ClWWalksNOn‘𝐺) = ∅) | |
12 | fvprc 6326 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → (Vtx‘𝐺) = ∅) | |
13 | eqidd 2772 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → ℕ0 = ℕ0) | |
14 | eqidd 2772 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) | |
15 | 12, 13, 14 | mpt2eq123dv 6864 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) = (𝑣 ∈ ∅, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) |
16 | mpt20 6872 | . . . 4 ⊢ (𝑣 ∈ ∅, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) = ∅ | |
17 | 15, 16 | syl6req 2822 | . . 3 ⊢ (¬ 𝐺 ∈ V → ∅ = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) |
18 | 11, 17 | eqtrd 2805 | . 2 ⊢ (¬ 𝐺 ∈ V → (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) |
19 | 10, 18 | pm2.61i 176 | 1 ⊢ (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1631 ∈ wcel 2145 {crab 3065 Vcvv 3351 ∅c0 4063 ‘cfv 6031 (class class class)co 6793 ↦ cmpt2 6795 0cc0 10138 ℕ0cn0 11494 Vtxcvtx 26095 ClWWalksN cclwwlkn 27174 ClWWalksNOncclwwlknon 27259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-i2m1 10206 ax-1ne0 10207 ax-rrecex 10210 ax-cnre 10211 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-nn 11223 df-n0 11495 df-clwwlknon 27260 |
This theorem is referenced by: clwwlknon 27262 clwwlknonOLD 27263 clwwlk0on0 27266 clwwlknon0 27267 2clwwlk2clwwlklem 27530 |
Copyright terms: Public domain | W3C validator |