![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknwwlknclOLD | Structured version Visualization version GIF version |
Description: Obsolete version of clwwlknwwlkncl 27202 as of 22-Mar-2022. (Contributed by Alexander van der Vekens, 29-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
clwwlknwwlknclOLD | ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑃 ++ 〈“(𝑃‘0)”〉) ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 471 | . . . 4 ⊢ ((𝑃 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
2 | eqid 2771 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | 2 | clwwlknbp 27183 | . . . . 5 ⊢ (𝑃 ∈ (𝑁 ClWWalksN 𝐺) → (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) |
4 | 3 | adantr 466 | . . . 4 ⊢ ((𝑃 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑁 ∈ ℕ) → (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) |
5 | eqid 2771 | . . . . . . 7 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
6 | 2, 5 | clwwlknp 27185 | . . . . . 6 ⊢ (𝑃 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) |
7 | 3simpc 1146 | . . . . . 6 ⊢ (((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝑃 ∈ (𝑁 ClWWalksN 𝐺) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) |
9 | 8 | adantr 466 | . . . 4 ⊢ ((𝑃 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑁 ∈ ℕ) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) |
10 | 1, 4, 9 | 3jca 1122 | . . 3 ⊢ ((𝑃 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)))) |
11 | 10 | ancoms 446 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)))) |
12 | eqid 2771 | . . 3 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)} | |
13 | 12 | clwwlkel 27195 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (𝑃 ++ 〈“(𝑃‘0)”〉) ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}) |
14 | 11, 13 | syl 17 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑃 ++ 〈“(𝑃‘0)”〉) ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∀wral 3061 {crab 3065 {cpr 4318 ‘cfv 6029 (class class class)co 6791 0cc0 10136 1c1 10137 + caddc 10139 − cmin 10466 ℕcn 11220 ..^cfzo 12666 ♯chash 13314 Word cword 13480 lastSclsw 13481 ++ cconcat 13482 〈“cs1 13483 Vtxcvtx 26088 Edgcedg 26153 WWalksN cwwlksn 26947 ClWWalksN cclwwlkn 27167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7094 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5821 df-ord 5867 df-on 5868 df-lim 5869 df-suc 5870 df-iota 5992 df-fun 6031 df-fn 6032 df-f 6033 df-f1 6034 df-fo 6035 df-f1o 6036 df-fv 6037 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-om 7211 df-1st 7313 df-2nd 7314 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-1o 7711 df-oadd 7715 df-er 7894 df-map 8009 df-pm 8010 df-en 8108 df-dom 8109 df-sdom 8110 df-fin 8111 df-card 8963 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-nn 11221 df-n0 11493 df-xnn0 11564 df-z 11578 df-uz 11887 df-rp 12029 df-fz 12527 df-fzo 12667 df-hash 13315 df-word 13488 df-lsw 13489 df-concat 13490 df-s1 13491 df-wwlks 26951 df-wwlksn 26952 df-clwwlk 27125 df-clwwlkn 27169 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |