MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknwwlksnOLD Structured version   Visualization version   GIF version

Theorem clwwlknwwlksnOLD 27382
Description: Obsolete version of clwwlknwwlksn 27381 as of 22-Mar-2022. (Contributed by AV, 24-Jan-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
clwwlknwwlksnOLD ((𝑁 ∈ ℕ ∧ 𝑊 ∈ (𝑁ClWWalksNOLD𝐺)) → 𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺))

Proof of Theorem clwwlknwwlksnOLD
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 isclwwlknOLD 27369 . . . . 5 (𝑁 ∈ ℕ → (𝑊 ∈ (𝑁ClWWalksNOLD𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁)))
2 eqid 2825 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2825 . . . . . . 7 (Edg‘𝐺) = (Edg‘𝐺)
42, 3isclwwlk 27313 . . . . . 6 (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
54anbi1i 619 . . . . 5 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁) ↔ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 𝑁))
61, 5syl6bb 279 . . . 4 (𝑁 ∈ ℕ → (𝑊 ∈ (𝑁ClWWalksNOLD𝐺) ↔ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 𝑁)))
7 idd 24 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 ∈ Word (Vtx‘𝐺)))
8 idd 24 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9 nncn 11359 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
10 npcan1 10779 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
119, 10syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
1211eqcomd 2831 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 = ((𝑁 − 1) + 1))
1312eqeq2d 2835 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((♯‘𝑊) = 𝑁 ↔ (♯‘𝑊) = ((𝑁 − 1) + 1)))
1413biimpd 221 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((♯‘𝑊) = 𝑁 → (♯‘𝑊) = ((𝑁 − 1) + 1)))
157, 8, 143anim123d 1573 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
1615com12 32 . . . . . . . . 9 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
17163exp 1154 . . . . . . . 8 (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))))
1817a1dd 50 . . . . . . 7 (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1)))))))
1918adantr 474 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1)))))))
20193imp1 1462 . . . . 5 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 𝑁) → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
2120com12 32 . . . 4 (𝑁 ∈ ℕ → ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
226, 21sylbid 232 . . 3 (𝑁 ∈ ℕ → (𝑊 ∈ (𝑁ClWWalksNOLD𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
2322imp 397 . 2 ((𝑁 ∈ ℕ ∧ 𝑊 ∈ (𝑁ClWWalksNOLD𝐺)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1)))
24 nnm1nn0 11661 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
252, 3iswwlksnx 27139 . . . 4 ((𝑁 − 1) ∈ ℕ0 → (𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
2624, 25syl 17 . . 3 (𝑁 ∈ ℕ → (𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
2726adantr 474 . 2 ((𝑁 ∈ ℕ ∧ 𝑊 ∈ (𝑁ClWWalksNOLD𝐺)) → (𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
2823, 27mpbird 249 1 ((𝑁 ∈ ℕ ∧ 𝑊 ∈ (𝑁ClWWalksNOLD𝐺)) → 𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wne 2999  wral 3117  c0 4144  {cpr 4399  cfv 6123  (class class class)co 6905  cc 10250  0cc0 10252  1c1 10253   + caddc 10255  cmin 10585  cn 11350  0cn0 11618  ..^cfzo 12760  chash 13410  Word cword 13574  lastSclsw 13622  Vtxcvtx 26294  Edgcedg 26345   WWalksN cwwlksn 27125  ClWWalkscclwwlk 27310  ClWWalksNOLDcclwwlknold 27363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-er 8009  df-map 8124  df-pm 8125  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-hash 13411  df-word 13575  df-wwlks 27129  df-wwlksn 27130  df-clwwlk 27311  df-clwwlknOLD 27365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator